Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38759766

RESUMO

BACKGROUND: Molecular testing with gene-expression profiling (GEP) and donor-derived cell-free DNA (dd-cfDNA) is increasingly used in the surveillance for acute cellular rejection (ACR) after heart transplant. However, the performance of dual testing over each test individually has not been established. Further, the impact of dual noninvasive surveillance on clinical decision-making has not been widely investigated. METHODS: We evaluated 2,077 subjects from the Surveillance HeartCare Outcomes Registry registry who were enrolled between 2018 and 2021 and had verified biopsy data and were categorized as dual negative, GEP positive/dd-cfDNA negative, GEP negative/dd-cfDNA positive, or dual positive. The incidence of ACR and follow-up testing rates for each group were evaluated. Positive likelihood ratios (LRs+) were calculated, and biopsy rates over time were analyzed. RESULTS: The incidence of ACR was 1.5% for dual negative, 1.9% for GEP positive/dd-cfDNA negative, 4.3% for GEP negative/dd-cfDNA positive, and 9.2% for dual-positive groups. Follow-up biopsies were performed after 8.8% for dual negative, 14.2% for GEP positive/dd-cfDNA negative, 22.8% for GEP negative/dd-cfDNA positive, and 35.4% for dual-positive results. The LR+ for ACR was 1.37, 2.91, and 3.90 for GEP positive, dd-cfDNA positive, and dual-positive testing, respectively. From 2018 to 2021, biopsies performed between 2 and 12-months post-transplant declined from 5.9 to 5.3 biopsies/patient, and second-year biopsy rates declined from 1.5 to 0.9 biopsies/patient. At 2 years, survival was 94.9%, and only 2.7% had graft dysfunction. CONCLUSIONS: Dual molecular testing demonstrated improved performance for ACR surveillance compared to single molecular testing. The use of dual noninvasive testing was associated with lower biopsy rates over time, excellent survival, and low incidence of graft dysfunction.

2.
Eur J Med Chem ; 263: 115794, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984295

RESUMO

The synthesis and evaluation of small-molecule inhibitors of tubulin polymerization remains a promising approach for the development of new therapeutic agents for cancer treatment. The natural products colchicine and combretastatin A-4 (CA4) inspired significant drug discovery campaigns targeting the colchicine site located on the beta-subunit of the tubulin heterodimer, but so far these efforts have not yielded an approved drug for cancer treatment in human patients. Interest in the colchicine site was enhanced by the discovery that a subset of colchicine site agents demonstrated dual functionality as both potent antiproliferative agents and effective vascular disrupting agents (VDAs). Our previous studies led to the discovery and development of a 2-aryl-3-aroyl-indole analogue (OXi8006) that inhibited tubulin polymerization and demonstrated low nM IC50 values against a variety of human cancer cell lines. A water-soluble phosphate prodrug salt (OXi8007), synthesized from OXi8006, displayed promising vascular disrupting activity in mouse models of cancer. To further extend structure-activity relationship correlations, a series of 6-aryl-3-aroyl-indole analogues was synthesized and evaluated for their inhibition of tubulin polymerization and cytotoxicity against human cancer cell lines. Several structurally diverse molecules in this small library were strong inhibitors of tubulin polymerization and of MCF-7 and MDA-MB-231 human breast cancer cells. One of the most promising analogues (KGP591) caused significant G2/M arrest of MDA-MB-231 cells, disrupted microtubule structure and cell morphology in MDA-MB-231 cells, and demonstrated significant inhibition of MDA-MB-231 cell migration in a wound healing (scratch) assay. A phosphate prodrug salt, KGP618, synthesized from its parent phenolic precursor, KGP591, demonstrated significant reduction in bioluminescence signal when evaluated in vivo against an orthotopic model of kidney cancer (RENCA-luc) in BALB/c mice, indicative of VDA efficacy. The most active compounds from this series offer promise as anticancer therapeutic agents.


Assuntos
Antineoplásicos , Pró-Fármacos , Camundongos , Animais , Humanos , Tubulina (Proteína)/metabolismo , Pró-Fármacos/farmacologia , Polimerização , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Relação Estrutura-Atividade , Antineoplásicos/química , Colchicina/farmacologia , Moduladores de Tubulina/química , Indóis/química , Fosfatos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
3.
Bioorg Med Chem ; 92: 117400, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37556912

RESUMO

The oxetane functional group offers a variety of potential advantages when incorporated within appropriate therapeutic agents as a ketone surrogate. OXi8006, a 2-aryl-3-aroyl-indole analogue, functions as a small-molecule inhibitor of tubulin polymerization that has a dual mechanism of action as both an antiproliferative agent and a tumor-selective vascular disrupting agent. Replacement of the bridging ketone moiety in OXi8006 with an oxetane functional group has expanded structure activity relationship (SAR) knowledge and provided insights regarding oxetane incorporation within this class of molecules. A new synthetic method using an oxetane-containing tertiary alcohol subjected to Lewis acid catalyzed conditions led to successful Friedel-Crafts alkylation and yielded fourteen new oxetane-containing indole-based molecules. This synthetic approach represents the first method to successfully install an oxetane ring at the 3-position of a 2-aryl-indole system. Several analogues showed potent cytotoxicity (micromolar GI50 values) against human breast cancer cell lines (MCF-7 and MDA-MB-231) and a pancreatic cancer cell line (PANC-1), although they proved to be ineffective as inhibitors of tubulin polymerization. Molecular docking studies comparing colchicine with the OXi8006-oxetane analogue 5m provided a rationale for the differential interaction of these molecules with the colchicine site on the tubulin heterodimer.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/química , Linhagem Celular Tumoral , Tubulina (Proteína)/metabolismo , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Indóis/química , Colchicina/farmacologia , Moduladores de Tubulina/farmacologia , Proliferação de Células , Estrutura Molecular
4.
Anal Sens ; 3(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37006671

RESUMO

Next generation chemiluminescent iridium 1,2-dioxetane complexes have been developed which consist of the Schaap's 1,2-dioxetane scaffold directly attached to the metal center. This was achieved by synthetically modifying the scaffold precursor with a phenylpyridine moiety, which can act as a ligand. Reaction of this scaffold ligand with the iridium dimer [Ir(BTP)2(µ-Cl)]2 (BTP = 2-(benzo[b]thiophen-2-yl)pyridine) yielded isomers which depict ligation through either the cyclometalating carbon or, interestingly, the sulfur atom of one BTP ligand. Their corresponding 1,2-dioxetanes display chemiluminescent responses in buffered solutions, exhibiting a single, red-shifted peak at 600 nm. This triplet emission was effectively quenched by oxygen, yielding in vitro Stern-Volmer constants of 0.1 and 0.009 mbar-1 for the carbon-bound and sulfur compound, respectively. Lastly, the sulfur-bound dioxetane was further utilized for oxygen sensing in muscle tissue of living mice and xenograft models of tumor hypoxia, depicting the ability of the probe chemiluminescence to penetrate biological tissue (total flux ~ 106 p/s).

5.
Tetrahedron Lett ; 1282023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-38343394

RESUMO

A concise linear synthesis of hypoxia inducible factor-2α (HIF-2α) inhibitor, belzutifan was achieved by reproducing key components of previous synthetic approaches to this molecule as described in several publications and patents. Belzutifan is an orally bioavailable small-molecule (HIF-2α) inhibitor for the treatment of von Hippel-Lindau (VHL) disease-associated renal cell carcinoma (RCC) that received FDA approval in 2021. Herein, we report a 13-step synthesis of PT2977 that proceeded in good overall yield with high diastereoselectivity. Separation of diastereomeric mixtures at two different stages of the synthesis proved advantageous in ease of separation. The X-ray structure of belzutifan was determined.

6.
Cancers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077745

RESUMO

The vascular disrupting activity of a promising tubulin-binding agent (OXi6196) was demonstrated in mice in MDA-MB-231 human breast tumor xenografts growing orthotopically in mammary fat pad and syngeneic RENCA kidney tumors growing orthotopically in the kidney. To enhance water solubility, OXi6196, was derivatized as its corresponding phosphate prodrug salt OXi6197, facilitating effective delivery. OXi6197 is stable in water, but rapidly releases OXi6196 in the presence of alkaline phosphatase. At low nanomolar concentrations OXi6196 caused G2/M cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells and monolayers of rapidly growing HUVECs underwent concentration-dependent changes in their morphology. Loss of the microtubule structure and increased bundling of filamentous actin into stress fibers followed by cell collapse, rounding and blebbing was observed. OXi6196 (100 nM) disrupted capillary-like endothelial networks pre-established with HUVECs on Matrigel®. When prodrug OXi6197 was administered to mice bearing orthotopic MDA-MB-231-luc tumors, dynamic bioluminescence imaging (BLI) revealed dose-dependent vascular shutdown with >80% signal loss within 2 h at doses ≥30 mg/kg and >90% shutdown after 6 h for doses ≥35 mg/kg, which remained depressed by at least 70% after 24 h. Twice weekly treatment with prodrug OXi6197 (20 mg/kg) caused a significant tumor growth delay, but no overall survival benefit. Similar efficacy was observed for the first time in orthotopic RENCA-luc tumors, which showed massive hemorrhage and necrosis after 24 h. Twice weekly dosing with prodrug OXi6197 (35 mg/kg) caused tumor growth delay in most orthotopic RENCA tumors. Immunohistochemistry revealed extensive necrosis, though with surviving peripheral tissues. These results demonstrate effective vascular disruption at doses comparable to the most effective vascular-disrupting agents (VDAs) suggesting opportunities for further development.

7.
Biomark Med ; 16(8): 647-661, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35485169

RESUMO

Aim: Allograft rejection remains a major cause of graft failure in kidney transplantation. Here the authors report the validation of a non-invasive molecular diagnostic assay, AlloMap Kidney, using peripheral blood. Methods: The AlloMap Kidney test is a gene expression profile utilizing the RNA-seq platform to measure immune quiescence in kidney transplant patients. Results/Conclusions: Analytical validation showed robust performance characteristics with an accuracy correlation coefficient of 0.997 and a precision coefficient of variation of 0.049 across testing. Clinical validation from the prospective, multi-center studies of 235 samples (66 rejection and 169 quiescence specimens) demonstrated the sensitivity of 70% and specificity of 66% for allograft rejection, while the negative predictive value was 95% to discriminate rejection from quiescence at 10% prevalence of rejection.


Assuntos
Transplante de Rim , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Humanos , Rim , Estudos Prospectivos , Transcriptoma
8.
Cancers (Basel) ; 13(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638255

RESUMO

The selective disruption of tumor-associated vasculature represents an attractive therapeutic approach. We have undertaken the first in vivo evaluation of KGP265, a water-soluble prodrug of a benzosuberene-based tubulin-binding agent, and found promising vascular-disrupting activity in three distinct tumor types. Dose escalation in orthotopic MDA-MB-231-luc breast tumor xenografts in mice indicated that higher doses produced more effective vascular shutdown, as revealed by dynamic bioluminescence imaging (BLI). In syngeneic orthotopic 4T1-luc breast and RENCA-luc kidney tumors, dynamic BLI and oxygen enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following the administration of KGP265 (7.5 mg/kg). The BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h, indicating vascular disruption, which continued over 24 h. A correlative histology confirmed increased necrosis and hemorrhage. Twice-weekly doses of KGP265 caused significant growth delay in both MDA-MB-231 and 4T1 breast tumors, with no obvious systemic toxicity. A combination with carboplatin produced significantly greater tumor growth delay than carboplatin alone, though significant carboplatin-associated toxicity was observed (whole-body weight loss). KGP265 was found to be effective at low concentrations, generating long-term vascular shutdown and tumor growth delay, thus providing strong rationale for further development, particularly in combination therapies.

9.
Molecules ; 26(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925707

RESUMO

Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.


Assuntos
Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Moduladores de Tubulina/uso terapêutico , Tubulina (Proteína)/genética , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Necrose/tratamento farmacológico , Necrose/genética , Necrose/patologia , Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Ligação Proteica , Tubulina (Proteína)/efeitos dos fármacos , Moduladores de Tubulina/química
10.
J Nat Prod ; 83(4): 937-954, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32196334

RESUMO

The natural products combretastatin A-1 (CA1) and combretastatin A-4 (CA4) function as potent inhibitors of tubulin polymerization and as selective vascular disrupting agents (VDAs) in tumors. Bioreductively activatable prodrug conjugates (BAPCs) can enhance selectivity by serving as substrates for reductase enzymes specifically in hypoxic regions of tumors. A series of CA1-BAPCs incorporating nor-methyl, mono-methyl, and gem-dimethyl nitrothiophene triggers were synthesized together with corresponding CA4-BAPCs, previously reported by Davis (Mol. Cancer Ther. 2006, 5 (11), 2886), for comparison. The CA4-gem-dimethylnitrothiophene BAPC 45 proved exemplary in comparison to its nor-methyl 43 and mono-methyl 44 congeners. It was stable in phosphate buffer (pH 7.4, 24 h), was cleaved (25%, 90 min) by NADPH-cytochrome P450 oxidoreductase (POR), was inactive (desirable prodrug attribute) as an inhibitor of tubulin polymerization (IC50 > 20 µM), and demonstrated hypoxia-selective activation in the A549 cell line [hypoxia cytotoxicity ratio (HCR) = 41.5]. The related CA1-gem-dimethylnitrothiophene BAPC 41 was also promising (HCR = 12.5) with complete cleavage (90 min) upon treatment with POR. In a preliminary in vivo dynamic bioluminescence imaging study, BAPC 45 (180 mg/kg, ip) induced a decrease (within 4 h) in light emission in a 4T1 syngeneic mouse breast tumor model, implying activation and vascular disruption.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Pró-Fármacos/farmacologia , Estilbenos/farmacologia , Células A549 , Animais , Antineoplásicos Fitogênicos/química , Neoplasias da Mama/tratamento farmacológico , Hipóxia Celular , Colchicina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Pró-Fármacos/química , Estilbenos/química , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
11.
Medchemcomm ; 10(8): 1445-1456, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534659

RESUMO

Numerous members of the combretastatin and chalcone families of natural products function as inhibitors of tubulin polymerization through a binding interaction at the colchicine site on ß-tubulin. These molecular scaffolds inspired the development of many structurally modified derivatives and analogues as promising anticancer agents. A productive design blueprint that involved molecular hybridization of the pharmacophore moieties of combretastatin A-4 (CA4) and the chalcones led to the discovery of two promising lead molecules referred to as KGP413 and SD400. The corresponding water-soluble phosphate prodrug salts of KGP413 and SD400 selectively damaged tumor-associated vasculature, thus highlighting the potential development of these molecules as vascular disrupting agents (VDAs). These previous studies prompted our current investigation of conformationally restricted chalcones. Herein, we report the synthesis of cyclic chalcones and related analogues that incorporate structural motifs of CA4, and evaluation of their cytotoxicity against human cancer cell lines [NCI-H460 (lung), DU-145 (prostate), and SK-OV-3 (ovarian)]. While these molecules proved inactive as inhibitors of tubulin polymerization (IC50 > 20 µM), eight molecules demonstrated good antiproliferative activity (GI50 < 20 µM) against all three cancer cell lines, and compounds 2j and 2l demonstrated sub-micromolar cytotoxicity. To the best of our knowledge these molecules represent the most potent (based on GI50) cyclic chalcones known to date, and are promising lead molecules for continued investigation.

12.
Tetrahedron Lett ; 60(5): 397-401, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31061544

RESUMO

Benzosuberene analogues (1 and 2) and dihydronaphthalene analogues (3 and 4) function as potent inhibitors of tubulin polymerization, demonstrate pronounced cytotoxicity (low nM to pM range) against human cancer cell lines, and are promising vascular disrupting agents (VDAs). As such, these compounds represent lead anticancer agents with potential translatability towards the clinic. Methodology previously established by us (and others) facilitated synthetic access to a variety of structural and functional group modifications necessary to explore structure activity relationship considerations directed towards the development of these (and related) molecules as potential therapeutic agents. During the course of these studies it became apparent that the availability of synthetic methodology to facilitate direct conversion of the phenolic-based compounds to their corresponding aniline congeners would be beneficial. Accordingly, modified synthetic routes toward these target phenols (benzosuberene 1 and dihydronaphthalene 3) were developed in order to improve scalability and overall yield [45-57% (1) and 32% (3)]. Moreover, benzosuberene-based phenolic analogue 1 and separately dihydronaphthalene-based phenolic analogue 3 were successfully converted into their corresponding aniline analogues 2 and 4 in good yield (>60% over three steps) using a palladium catalyzed amination reaction.

13.
J Med Chem ; 62(11): 5594-5615, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31059248

RESUMO

A promising design paradigm for small-molecule inhibitors of tubulin polymerization that bind to the colchicine site draws structural inspiration from the natural products colchicine and combretastatin A-4 (CA4). Our previous studies with benzocycloalkenyl and heteroaromatic ring systems yielded promising inhibitors with dihydronaphthalene and benzosuberene analogues featuring phenolic (KGP03 and KGP18) and aniline (KGP05 and KGP156) congeners emerging as lead agents. These molecules demonstrated dual mechanism of action, functioning both as potent vascular disrupting agents (VDAs) and as highly cytotoxic anticancer agents. A further series of analogues was designed to extend functional group diversity and investigate regioisomeric tolerance. Ten new molecules were effective inhibitors of tubulin polymerization (IC50 < 5 µM) with seven of these exhibiting highly potent activity comparable to CA4, KGP18, and KGP03. For one of the most effective agents, dose-dependent vascular shutdown was demonstrated using dynamic bioluminescence imaging in a human prostate tumor xenograft growing in a rat.


Assuntos
Cumarínicos/química , Cumarínicos/farmacologia , Desenho de Fármacos , Multimerização Proteica/efeitos dos fármacos , Tubulina (Proteína)/química , Animais , Linhagem Celular Tumoral , Técnicas de Química Sintética , Cumarínicos/síntese química , Humanos , Masculino , Estrutura Quaternária de Proteína , Ratos
14.
Medchemcomm ; 9(10): 1649-1662, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429970

RESUMO

The natural products colchicine and combretastatin A-4 (CA4) have provided inspiration for the discovery and development of a wide array of derivatives and analogues that inhibit tubulin polymerization through a binding interaction at the colchicine site on ß-tubulin. A water-soluble phosphate prodrug salt of CA4 (referred to as CA4P) has demonstrated the ability to selectively damage tumor-associated vasculature and ushered in a new class of developmental anticancer agents known as vascular disrupting agents (VDAs). Through a long-term program of structure activity relationship (SAR) driven inquiry, we discovered that the dihydronaphthalene molecular scaffold provided access to small-molecule inhibitors of tubulin polymerization. In particular, a dihydronaphthalene analogue bearing a pendant trimethoxy aryl ring (referred to as KGP03) and a similar aroyl ring (referred to as KGP413) were potent inhibitors of tubulin polymerization (IC50 = 1.0 and 1.2 µM, respectively) and displayed low nM cytotoxicity against human cancer cell lines. In order to enhance water-solubility for in vivo evaluation, the corresponding phosphate prodrug salts (KGP04 and KGP152, respectively) were synthesized. In a preliminary in vivo study in a SCID-BALB/c mouse model bearing the human breast tumor MDA-MB-231-luc, a 99% reduction in signal was observed with bioluminescence imaging (BLI) 4 h after IP administration of KGP152 (200 mg kg-1) indicating reduced tumor blood flow. In a separate study, disruption of tumor-associated blood flow in a Fischer rat bearing an A549-luc human lung tumor was observed by color Doppler ultrasound following administration of KGP04 (15 mg kg-1).

15.
Tetrahedron Lett ; 59(40): 3594-3599, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31156276

RESUMO

Antibody-drug conjugates (ADCs) represent an emerging class of biopharmaceutical agents that deliver highly potent anticancer agents (payloads) selectively to tumors or components associated with the tumor microenvironment. The linker, responsible for the connection between the antibody and payload, is a crucial component of ADCs. In certain examples the linker is composed of a cleavable short peptide which imparts an additional aspect of selectivity. Especially prevalent is the cathepsin B cleavable Mc-Val-Cit-PABOH linker utilized in many pre-clinical ADC candidates, as well as the FDA approved ADC ADCETRIS® (brentuximab vedotin). An alternative route for the synthesis of the cathepsin B cleavable Mc-Val-Cit-PABOH linker is reported herein that involved six steps from l-Citrulline and proceeded with a 50% overall yield. In this modified route, the spacer (a para-aminobenzyl alcohol moiety) was incorporated via HATU coupling followed by dipeptide formation. Importantly, this route avoided undesirable epimerization and proceeded with improved overall yield. Utilizing this methodology, a drug-linker construct incorporating a potent small-molecule inhibitor of tubulin polymerization (referred to as KGP05), was synthesized as a representative example.

16.
Bioorg Med Chem Lett ; 27(5): 1304-1310, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28117205

RESUMO

The magnitude of expression of cathepsin L, often upregulated in the tumor microenvironment, correlates with the invasive and metastatic nature of certain tumors. Inhibition of cathepsin L represents an emerging strategy for the treatment of metastatic cancer. A potent, small-molecule inhibitor (referred to as KGP94) of cathepsin L, and new KGP94 analogues were synthesized. (3,5-Dibromophenyl)-(3-hydroxyphenyl) ketone thiosemicarbazone (22), with an IC50 value of 202nM, exhibited similar inhibitory activity against cathepsin L compared to KGP94 (IC50=189nM). Due to limited aqueous solubility of KGP94, a water-soluble phosphate salt (KGP420) was prepared in order to facilitate future in vivo studies. Enzymatic hydrolysis with alkaline phosphatase (ALP) demonstrated that the phosphate prodrug, KGP420, was readily converted to the parent compound, KGP94.


Assuntos
Catepsina L/antagonistas & inibidores , Organofosfatos/química , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/farmacologia , Tioureia/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Estrutura Molecular , Pró-Fármacos/química , Sais/síntese química , Sais/farmacologia , Solubilidade , Tiossemicarbazonas/química , Tioureia/síntese química , Tioureia/química , Tioureia/farmacologia , Água/química
17.
Bioorg Med Chem Lett ; 27(3): 636-641, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007448

RESUMO

A variety of solid tumor cancers contain significant regions of hypoxia, which provide unique challenges for targeting by potent anticancer agents. Bioreductively activatable prodrug conjugates (BAPCs) represent a promising strategy for therapeutic intervention. BAPCs are designed to be biologically inert until they come into contact with low oxygen tension, at which point reductase enzyme mediated cleavage releases the parent anticancer agent in a tumor-specific manner. Phenstatin is a potent inhibitor of tubulin polymerization, mimicking the chemical structure and biological activity of the natural product combretastatin A-4. Synthetic approaches have been established for nitrobenzyl, nitroimidazole, nitrofuranyl, and nitrothienyl prodrugs of phenstatin incorporating nor-methyl, mono-methyl, and gem-dimethyl variants of the attached nitro compounds. A series of BAPCs based on phenstatin have been prepared by chemical synthesis and evaluated against the tubulin-microtubule protein system. In a preliminary study using anaerobic conditions, the gem-dimethyl nitrothiophene and gem-dimethyl nitrofuran analogues were shown to undergo efficient enzymatic cleavage in the presence of NADPH cytochrome P450 oxidoreductase. Each of the eleven BAPCs evaluated in this study demonstrated significantly reduced inhibitory activity against tubulin in comparison to the parent anti-cancer agent phenstatin (IC50=1.0µM). In fact, the majority of the BAPCs (seven of the eleven analogues) were not inhibitors of tubulin polymerization (IC50>20µM), which represents an anticipated (and desirable) attribute for these prodrugs, since they are intended to be biologically inactive prior to enzyme-mediated cleavage to release phenstatin.


Assuntos
Benzofenonas/química , Benzofenonas/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Benzofenonas/metabolismo , Humanos , Concentração Inibidora 50 , Pró-Fármacos/metabolismo , Ligação Proteica , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia
18.
Bioorg Med Chem ; 24(5): 938-956, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26852340

RESUMO

Targeting tumor vasculature represents an intriguing therapeutic strategy in the treatment of cancer. In an effort to discover new vascular disrupting agents with improved water solubility and potentially greater bioavailability, various amino acid prodrug conjugates (AAPCs) of potent amino combretastatin, amino dihydronaphthalene, and amino benzosuberene analogs were synthesized along with their corresponding water-soluble hydrochloride salts. These compounds were evaluated for their ability to inhibit tubulin polymerization and for their cytotoxicity against selected human cancer cell lines. The amino-based parent anticancer agents 7, 8, 32 (also referred to as KGP05) and 33 (also referred to as KGP156) demonstrated potent cytotoxicity (GI50=0.11-40nM) across all evaluated cell lines, and they were strong inhibitors of tubulin polymerization (IC50=0.62-1.5µM). The various prodrug conjugates and their corresponding salts were investigated for cleavage by the enzyme leucine aminopeptidase (LAP). Four of the glycine water-soluble AAPCs (16, 18, 44 and 45) showed quantitative cleavage by LAP, resulting in the release of the highly cytotoxic parent drug, whereas partial cleavage (<10-90%) was observed for other prodrugs (15, 17, 24, 38 and 39). Eight of the nineteen AAPCs (13-16, 42-45) showed significant cytotoxicity against selected human cancer cell lines. The previously reported CA1-diamine analog and its corresponding hydrochloride salt (8 and 10, respectively) caused extensive disruption (at a concentration of 1.0µM) of human umbilical vein endothelial cells growing in a two-dimensional tubular network on matrigel. In addition, compound 10 exhibited pronounced reduction in bioluminescence (greater than 95% compared to saline control) in a tumor bearing (MDA-MB-231-luc) SCID mouse model 2h post treatment (80mg/kg), with similar results observed upon treatment (15mg/kg) with the glycine amino-dihydronaphthalene AAPC (compound 44). Collectively, these results support the further pre-clinical development of the most active members of this structurally diverse collection of water-soluble prodrugs as promising anticancer agents functioning through a mechanism involving vascular disruption.


Assuntos
Antineoplásicos/uso terapêutico , Bibenzilas/uso terapêutico , Cumarínicos/uso terapêutico , Naftalenos/uso terapêutico , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Aminoácidos/química , Aminoácidos/uso terapêutico , Animais , Antineoplásicos/química , Bibenzilas/química , Mama/irrigação sanguínea , Mama/efeitos dos fármacos , Mama/patologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cumarínicos/química , Desenho de Fármacos , Feminino , Humanos , Camundongos , Camundongos SCID , Naftalenos/química , Neoplasias/patologia , Imagem Óptica , Pró-Fármacos/química , Solubilidade , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Água/química
19.
Medchemcomm ; 7(12): 2418-2427, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28217276

RESUMO

The natural products colchicine and combretastatin A-4 (CA4) have been inspirational for the design and synthesis of structurally related analogues and spin-off compounds as inhibitors of tubulin polymerization. The discovery that a water-soluble phosphate prodrug salt of CA4 (referred to as CA4P) is capable of imparting profound and selective damage to tumor-associated blood vessels paved the way for the development of a new therapeutic approach for cancer treatment utilizing small-molecule inhibitors of tubulin polymerization that also act as vascular disrupting agents (VDAs). Combination of salient structural features associated with colchicine and CA4 led to the design and synthesis of a variety of fused aryl-cycloalkyl and aryl-heterocyclic compounds that function as inhibitors of tubulin polymerization. Prominent among these compounds is a benzosuberene analogue (referred to as KGP18), which demonstrates sub-nM cytotoxicity against human cancer cell lines and functions (when administered as a water-soluble prodrug salt) as a VDA in mouse models. Structure activity relationship considerations led to the evaluation of benzocyclooctyl [6,8 fused] and indene [6,5 fused] ring systems. Four benzocyclooctene and four indene analogues were prepared and evaluated biologically. Three of the benzocyclooctene analogues were active as inhibitors of tubulin polymerization (IC50 < 5 µM), and benzocyclooctene phenol 23 was comparable to KGP18 in terms of potency. The analogous indene-based compound 31 also functioned as an inhibitor of tubulin polymerization (IC50 = 11 µM) with reduced potency. The most potent inhibitor of tubulin polymerization from this group was benzocyclooctene analogue 23, and it was converted to its water-soluble prodrug salt 24 to assess its potential as a VDA. Preliminary in vivo studies, which utilized the MCF7-luc-GFP-mCherry breast tumor in a SCID mouse model, demonstrated that treatment with 24 (120 mg/kg) resulted in significant vascular shutdown, as evidenced by bioluminescence imaging at 4 h post administration, and that the effect continued at both 24 and 48 h. Contemporaneous studies with CA4P, a clinically relevant VDA, were carried out as a positive control.

20.
Bioorg Med Chem ; 23(21): 6974-92, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26462052

RESUMO

Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 µM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 µM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre-clinical drug candidates.


Assuntos
Antineoplásicos/síntese química , Catepsina L/antagonistas & inibidores , Inibidores de Cisteína Proteinase/síntese química , Tiossemicarbazonas/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzofenonas/química , Sítios de Ligação , Catepsina B/antagonistas & inibidores , Catepsina B/metabolismo , Catepsina L/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/uso terapêutico , Desenho de Fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração Inibidora 50 , Isomerismo , Cinética , Neoplasias Mamárias Animais/tratamento farmacológico , Camundongos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/uso terapêutico , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA