Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 142(12): 2109-2117, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28548668

RESUMO

A limitation of conventional quadrupole ion trap scan modes which use rf amplitude control for mass scanning is that, in order to detect a subset of an ion population, the rest of the ion population must also be interrogated. That is, ions cannot be detected out of order; they must be detected in order of either increasing or decreasing mass-to-charge (m/z). However, an ion trap operated in the ac frequency scan mode, where the rf amplitude is kept constant and instead the ac frequency is used for mass-selective operations, has no such limitation because any variation in the ac frequency affects only the subset of ions whose secular frequencies match the perturbation frequency. Hence, an ion trap operated in the ac frequency scan mode can perform any arbitrary mass scan, as well as a sequence of scans, using a single ion injection; we demonstrate both capabilities here. Combining these two capabilities, we demonstrate the acquisition of a full mass spectrum, a product ion spectrum, and a second generation product ion spectrum using a single ion injection event. We further demonstrate a "segmented scan" in which different mass ranges are interrogated at different rf amplitudes in order to improve resolution over a portion of the mass range, and a "periodic scan" in which ions are continuously introduced into the ion trap to achieve a nearly 100% duty cycle. These unique scan modes, along with other characteristics of ac frequency scanning, are particularly appropriate for miniature ion trap mass spectrometers. Hence, implementation of ac frequency scanning on a prototype of the Mars Organic Molecule Analyzer mass spectrometer is also described.

2.
Astrobiology ; 17(6-7): 655-685, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067288

RESUMO

The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission. Key Words: Mars-Mass spectrometry-Life detection-Planetary instrumentation. Astrobiology 17, 655-685.

3.
Int J Mass Spectrom ; 422: 177-187, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33005095

RESUMO

The Mars Organic Molecule Analyzer (MOMA), a dual-source, ion trap-based instrument capable of both pyrolysis-gas chromatography mass spectrometry (pyr/GC-MS) and laser desorption/ionization mass spectrometry (LDI-MS), is the core astrobiology investigation on the ExoMars rover. The MOMA instrument will be the first spaceflight mass analyzer to exploit the LDI technique to detect refractory organic compounds and characterize host mineralogy; this mode of analysis will be conducted at Mars ambient conditions. In order to achieve high performance in the Martian environment while keeping the instrument compact and low power, a number of innovative designs and components have been implemented for MOMA. These include a miniaturized linear ion trap (LIT), a fast actuating aperture valve with ion inlet tube. and a Microelectromechanical System (MEMS) Pirani sensor. Advanced analytical capabilities like Stored Waveform Inverse Fourier Transform (SWIFT) for selected ion ejection and tandem mass spectrometry (MS/MS) are realized in LDI-MS mode, and enable the isolation and enhancement of specific mass ranges and structural analysis, respectively. We report here the technical details of these instrument components as well as system-level analytical capabilities, and we review the applications of this technology to Mars and other high-priority targets of planetary exploration.

4.
Astrobiology ; 15(2): 104-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25622133

RESUMO

Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars.


Assuntos
Exobiologia , Espectrometria de Massas , Percloratos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Cálcio/química , Carbonatos/química , Lasers , Magnésio/química , Marte , Compostos Orgânicos/química , Percloratos/química , Compostos Policíclicos/química , Rodaminas/química , Silicatos , Voo Espacial/instrumentação
5.
Anal Chem ; 81(18): 7527-31, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19655772

RESUMO

Secondary ion mass spectrometry (SIMS) run in the event-by-event bombardment/detection mode provides a unique ability to obtain molecular information from single nano-objects, since assays are based on secondary ion coemission from single impacts. The characterization of individual nano-objects is demonstrated with negatively charged polymer spheres that are attracted to and retained by nanoalumina whiskers. The whiskers, 2 nm in diameter and approximately 250 nm in length, are grafted to a microglass fiber with an average diameter of approximately 0.6 microm and several millimeters long. The spheres are monodisperse polystyrene nanoparticles (30 nm diameter). Massive Au projectiles, specifically 136 keV Au(400)(4+), were utilized to bombard analyte surfaces due to its high efficiency for producing multi-ion emission identified by time-of-flight mass spectrometry. Our results show that this mode of mass spectrometry can provide information on the nature, size, relative location, and abundance of nano-objects in the field of view. The key to characterizing nanodomains is to monitor the coincidental secondary ion emission from the nanovolume perturbed by single projectile impacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA