RESUMO
The Aryl hydrocarbon Receptor (AhR) is a xenobiotic sensor in vertebrates, regulating the metabolism of its own ligands. However, no ligand has been identified to date for any AhR in invertebrates. In C. elegans, the AhR ortholog, AHR-1, displays physiological functions. Therefore, we compared the transcriptomic and metabolic profiles of worms expressing AHR-1 or not and investigated the putative panel of chemical AHR-1 modulators. The metabolomic profiling indicated a role for AHR-1 in amino acids, carbohydrates, and fatty acids metabolism. The transcriptional profiling in neurons expressing AHR-1, identified 95 down-regulated genes and 76 up-regulated genes associated with neuronal and metabolic functions in the nervous system. A gene reporter system allowed us to identify several AHR-1 modulators including bacterial, dietary, or environmental compounds. These results shed new light on the biological functions of AHR-1 in C. elegans and perspectives on the evolution of the AhR functions across species.
RESUMO
PURPOSE: Several clinical studies suggested that light-to-moderate alcohol intake could alleviate nonalcoholic fatty liver disease (NAFLD), but the underlying mechanism is still poorly understood. METHODS: Mice fed a high-fat diet (HFD) were submitted or not to moderate ethanol intake for 3 months (ca. 10 g/kg/day) via drinking water. Biochemical, analytical and transcriptomic analyses were performed in serum and liver. RESULTS: Serum ethanol concentrations in ethanol-treated HFD mice comprised between 0.5 and 0.7 g/l throughout the experiment. NAFLD improvement was observed in ethanol-treated HFD mice as assessed by reduced serum transaminase activity. This was associated with less microvesicular and more macrovacuolar steatosis, the absence of apoptotic hepatocytes and a trend towards less fibrosis. Liver lipid analysis showed increased amounts of fatty acids incorporated in triglycerides and phospholipids, reduced proportion of palmitic acid in total lipids and higher desaturation index, thus suggesting enhanced stearoyl-coenzyme A desaturase activity. mRNA expression of several glycolytic and lipogenic enzymes was upregulated. Genome-wide expression profiling and gene set enrichment analysis revealed an overall downregulation of the expression of genes involved in collagen fibril organization and leukocyte chemotaxis and an overall upregulation of the expression of genes involved in oxidative phosphorylation and mitochondrial respiratory chain complex assembly. In addition, mRNA expression of several proteasome subunits was upregulated in ethanol-treated HFD mice. CONCLUSIONS: Moderate chronic ethanol consumption may alleviate NAFLD by several mechanisms including the generation of non-toxic lipid species, reduced expression of profibrotic and proinflammatory genes, restoration of mitochondrial function and possible stimulation of proteasome activity.
Assuntos
Dieta Hiperlipídica , Etanol/sangue , Etanol/farmacologia , Ácidos Graxos Monoinsaturados/sangue , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Triglicerídeos/sangue , Animais , Modelos Animais de Doenças , Etanol/administração & dosagem , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangueRESUMO
The reversible adenine phosphoribosyltransferase enzyme (APRT) is essential for purine homeostasis in prokaryotes and eukaryotes. In humans, APRT (hAPRT) is the only enzyme known to produce AMP in cells from dietary adenine. APRT can also process adenine analogs, which are involved in plant development or neuronal homeostasis. However, the molecular mechanism underlying substrate specificity of APRT and catalysis in both directions of the reaction remains poorly understood. Here we present the crystal structures of hAPRT complexed to three cellular nucleotide analogs (hypoxanthine, IMP, and GMP) that we compare with the phosphate-bound enzyme. We established that binding to hAPRT is substrate shape-specific in the forward reaction, whereas it is base-specific in the reverse reaction. Furthermore, a quantum mechanics/molecular mechanics (QM/MM) analysis suggests that the forward reaction is mainly a nucleophilic substitution of type 2 (SN2) with a mix of SN1-type molecular mechanism. Based on our structural analysis, a magnesium-assisted SN2-type mechanism would be involved in the reverse reaction. These results provide a framework for understanding the molecular mechanism and substrate discrimination in both directions by APRTs. This knowledge can play an instrumental role in the design of inhibitors, such as antiparasitic agents, or adenine-based substrates.
Assuntos
Adenina Fosforribosiltransferase/metabolismo , Adenina/química , Adenina/metabolismo , Adenina Fosforribosiltransferase/química , Biocatálise , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Estrutura Terciária de Proteína , Teoria Quântica , Especificidade por SubstratoRESUMO
Exposure to xenobiotics could favor the transition of nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis in obese patients. Recently, we showed in different models of NAFL that benzo[a]pyrene (B[a]P) and ethanol coexposure induced a steatohepatitis-like state. One model was HepaRG cells incubated with stearate and oleate for 2 weeks. In the present study, we wished to determine in this model whether mitochondrial dysfunction and reactive oxygen species (ROS) overproduction could be involved in the occurrence of this steatohepatitis-like state. CRISPR/Cas9-modified cells were also used to specify the role of aryl hydrocarbon receptor (AhR), which is potently activated by B[a]P. Thus, nonsteatotic and steatotic HepaRG cells were treated with B[a]P, ethanol, or both molecules for 2 weeks. B[a]P/ethanol coexposure reduced mitochondrial respiratory chain activity, mitochondrial respiration, and mitochondrial DNA levels and induced ROS overproduction in steatotic HepaRG cells. These deleterious effects were less marked or absent in steatotic cells treated with B[a]P alone or ethanol alone and in nonsteatotic cells treated with B[a]P/ethanol. Our study also disclosed that B[a]P/ethanol-induced impairment of mitochondrial respiration was dependent on AhR activation. Hence, mitochondrial dysfunction and ROS generation could explain the occurrence of a steatohepatitis-like state in steatotic HepaRG cells exposed to B[a]P and ethanol.
Assuntos
Benzo(a)pireno/efeitos adversos , Etanol/efeitos adversos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Estresse Oxidativo/efeitos dos fármacos , Progressão da Doença , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismoRESUMO
Phosphoribosyltransferases catalyze the displacement of a PRPP α-1'-pyrophosphate to a nitrogen-containing nucleobase. How they control the balance of substrates/products binding and activities is poorly understood. Here, we investigated the human adenine phosphoribosyltransferase (hAPRT) that produces AMP in the purine salvage pathway. We show that a single oxygen atom from the Tyr105 side chain is responsible for selecting the active conformation of the 12 amino acid long catalytic loop. Using in vitro, cellular, and in crystallo approaches, we demonstrated that Tyr105 is key for the fine-tuning of the kinetic activity efficiencies of the forward and reverse reactions. Together, our results reveal an evolutionary pressure on the strictly conserved Tyr105 and on the dynamic motion of the flexible loop in phosphoribosyltransferases that is essential for purine biosynthesis in cells. These data also provide the framework for designing novel adenine derivatives that could modulate, through hAPRT, diseases-involved cellular pathways.
Assuntos
Adenina Fosforribosiltransferase/metabolismo , Adenina Fosforribosiltransferase/química , Adenina Fosforribosiltransferase/isolamento & purificação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação ProteicaRESUMO
The first and critical step in the mechanism of aldosterone action is its binding to the mineralocorticoid receptor (MR), a member of the nuclear receptor superfamily. Over the last 40 years, numerous studies have attempted to determine the structural determinants of ligand-binding to MR. An initial set of data showed that hsp90 is bound to the receptor via specific regions and maintains it in a ligand-binding competent state. Site-directed mutagenesis and functional studies guided by a 3D model of the MR ligand-binding domain (LBD) made it possible to identify the residues responsible for the high affinity and selectivity for aldosterone, and to characterize the mechanisms of MR activation and inactivation. The recent determination of the X-ray crystal structures of the LBD of the wild-type MR and MR(S810L), which is responsible for a familial form of hypertension, has made it possible to elucidate the peculiar mechanism of activation of MR(S810L) and established a clear structure/activity relationship for steroidal and non-steroidal MR antagonists.
Assuntos
Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/metabolismo , Aldosterona/química , Aldosterona/metabolismo , Animais , Cristalografia por Raios X , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligantes , Antagonistas de Receptores de Mineralocorticoides , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Receptores de Mineralocorticoides/agonistas , Relação Estrutura-AtividadeRESUMO
Spirolactones are potent antagonists of the mineralocorticoid receptor (MR), a ligand-induced transcription factor belonging to the nuclear receptor superfamily. Spirolactones are synthetic molecules characterized by the presence of a C17 gamma-lactone, which is responsible for their antagonist character. They harbor various substituents at several positions of the steroid skeleton that modulate their potency in ways that remain to be determined. This is particularly obvious for C7 substituents. The instability of antagonist-MR complexes makes them difficult to crystallize. We took advantage of the S810L activating mutation in MR (MR(S810L)), which increases the stability of ligand-MR complexes to crystallize the ligand-binding domain (LBD) of MR(S810L) associated with 7alpha-acetylthio-17beta-hydroxy-3-oxopregn-4-en-21-carboxylic acid gamma-lactone (SC9420), a spirolactone with a C7 thioacetyl group. The crystal structure makes it possible to identify the contacts between SC9420 and MR and to elucidate the role of Met852 in the mode of accommodation of the C7 substituent of SC9420. The transactivation activities of MR(S810L/Q776A), MR(S810L/R817A), and MR(S810L/N770A) reveal that the contacts between SC9420 and the Gln776 and Arg817 residues are crucial to maintaining MR(S810L) in its active state, whereas the contact between SC9420 and the Asn770 residue contributes only to the high affinity of SC9420 for MR. Moreover, docking experiments with other C7-substituted spirolactones revealed that the MR(S810L)-activating potency of spirolactones is linked to the ability of their C7 substituent to be accommodated in LBD. It is remarkable that the MR(S810L)-activating and MR(WT)-inactivating potencies of the C7-substituted spirolactones follow the same order, suggesting that the C7 substituent is accommodated in the same way in MR(S810L) and MR(WT). Thus, the MR(S810L) structure may provide a powerful tool for designing new, more effective, MR antagonists.
Assuntos
Antagonistas de Receptores de Mineralocorticoides , Espironolactona/química , Substituição de Aminoácidos , Arginina/genética , Asparagina/genética , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Glicina/genética , Humanos , Ligação de Hidrogênio , Rim/citologia , Ligantes , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/genética , Espironolactona/isolamento & purificação , Espironolactona/metabolismo , Relação Estrutura-Atividade , Fatores de Tempo , Ativação Transcricional , TransfecçãoRESUMO
Aldosterone binds to the mineralocorticoid receptor (MR) and exerts fine control over Na+ absorption in renal collecting duct cells (CCDs). Many natural and synthetic steroids can also bind to the MR to produce agonist or antagonist effects. Here, we investigate whether androgenic hormones act as MR agonist or antagonist ligands in CCDs. Testosterone (T), dihydrotestosterone (DHT), and methyltrienolone (R1881), a synthetic androgen agonist, all bind to the MR. R1881 displayed the same affinity for MR as aldosterone. Androgens did not activate the MR transiently expressed in human embryonic kidney 293T cells but did antagonize aldosterone-induced MR trans-activation activity (R1881>DHT>T). Short-circuit current (Isc) experiments, used to measure transepithelial Na+ transport, revealed that 10(-5) M T and DHT or R1881 prevented the increase in the amiloride-sensitive component of Isc caused by aldosterone in mouse mpkCCDcl4 collecting duct cells partially and totally, respectively. In contrast, androgens had no effect on stimulated Isc elicited by the specific glucocorticoid agonist 11beta,17beta-dihydroxy-17alpha-(1-propynyl) and rost-1,4,6-trien-3-one (RU26988). Docking of steroids within the crystal structure of the ligand-binding domain of MR, together with trans-activation studies, revealed that the contacts between the 17beta-hydroxyl group of androgens and the Asn770, Cys942, and Thr945 residues of the ligand-binding cavity stabilize ligand binding complexes but are not strong enough to keep the receptor in its active state. Altogether, these findings indicate that androgen ligands, particularly R1881, act as MR antagonists in aldosterone target cells and provide new insights into the requirements for MR activation to occur and for the designing of new selective MR antagonists.
Assuntos
Metribolona/farmacologia , Antagonistas de Receptores de Mineralocorticoides , Androgênios/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , Eletrofisiologia , Humanos , Rim/citologia , Ligantes , Camundongos , Sódio/metabolismo , Congêneres da Testosterona/farmacologiaRESUMO
The S810L mutation within the human mineralocorticoid receptor (MR S810L) induces severe hypertension and switches progesterone from antagonist to agonist. Here we report the crystal structures of the ligand-binding domain of MR S810L in complex with progesterone and deoxycorticosterone, an agonist of both wild-type and mutant MRs. These structures, the first for MR, identify the specific contacts created by Leu810 and clarify the mechanism of activation of MR S810L.
Assuntos
Hipertensão/genética , Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/genética , Substituição de Aminoácidos , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Humanos , Ligantes , Mutagênese , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/químicaRESUMO
Spirolactones harboring various C7 substituents are aldosterone antagonists, and some of them are used in the treatment of essential hypertension. They bind to the human mineralocorticoid receptor and render it transcriptionally inactive. Structural analysis using a three-dimensional homology model of the ligand-binding domain of the receptor has revealed that the Met852 residue of the ligand-binding cavity faces the C7 substituent of spirolactones. We therefore tested the binding capacities of C7-substituted spirolactones in an in vitro system expressing either the mutant receptor, in which Met852 was replaced by alanine, or the wild-type receptor. The M852A mutation had almost no effect on the binding of C7-substituted spirolactones to mineralocorticoid receptor but dramatically reduced the capacity of the receptor to bind steroids with no C7 substituent (aldosterone, cortisol, deoxycorticosterone, and canrenone). cis-trans Cotransfection assays revealed that two spirolactones characterized by having a propyl group [7 alpha-propyl-17 alpha-hydroxy-3-oxo-preg-4-ene-21-carboxylic acid gamma-lactone (RU26752)] or a thioacetyl group (spironolactone) at the C7 position acquired agonist properties when bound to the mutant receptor. In contrast, mexrenone and eplerenone, both of which harbor an acetyl group at the C7 position, retained antagonist properties when bound to the mutant receptor. Overall, these findings indicate that Met852 acts as an organizer residue that plays two major roles: 1) it allows steroids with no substituent at the C7 position to be accommodated within the ligand-binding cavity; and 2) it is involved in the steric hindrance that prevents C7-substituted spirolactones from folding the receptor in its active state.
Assuntos
Ligantes , Metionina/metabolismo , Receptores de Mineralocorticoides/metabolismo , Animais , Células COS , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Metionina/química , Camundongos , Ligação Proteica/fisiologia , Coelhos , Receptores de Mineralocorticoides/químicaRESUMO
The ability of steroid ligands to inactivate the human mineralocorticoid receptor (MR(WT)) has been shown to be due to their inability to contact Asn770, a residue of the H3 helix involved in stabilizing contacts with the H11-H12 loop region. However, all steroid ligands that display antagonist properties when bound to MR(WT), have been shown to activate a mutant receptor (MR(L810)) associated with a severe form of hypertension. Biochemical studies revealed that S810L mutation induces a change in the receptor conformation and increases the steroid-receptor complexes stability. From a three-dimensional model of the MR ligand-binding domain, it is likely that the S810L mutation causes a steric hindrance between the side chains of Leu810 (H5) and Gln776 (H3) that provokes a bending of the H3 helix. As a consequence, the positioning of MR(WT) antagonists within the ligand-binding cavity is modified in such a way that they can activate the mutant MR(L810). The results from biochemical studies also revealed that 5alpha-pregnan-20-one, 4,9-androstadiene-3,17-dione and RU486, unable to bind MR(WT), acted as potent MR(L810) antagonists.
Assuntos
Hipertensão/metabolismo , Antagonistas de Receptores de Mineralocorticoides , Esteroides/química , Esteroides/farmacologia , Substituição de Aminoácidos , Cristalografia por Raios X , Humanos , Hipertensão/congênito , Hipertensão/genética , Leucina/genética , Ligantes , Mutação , Ligação Proteica/genética , Conformação Proteica , Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/genética , Serina/genética , Esteroides/metabolismo , Relação Estrutura-AtividadeRESUMO
The human brain is a target tissue for glucocorticoids (GC). Dehydroepiandrosterone (DHEA) is a neurosteroid produced in the brain where it is transformed into 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA. The antiglucocorticoid effects of both 7-hydroxylated metabolites have been investigated with evidence in mice that neither form of DHEA interfered with the binding of GC to its glucocorticoid receptor (GR), but contributed to a decreased nuclear uptake of the activated GR. Our objective was to use COS-7 cell culture to research DHEA, 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA interferences with GR trafficking. These cells did not carry out the 7alpha-hydroxylation of DHEA and the oxidation of cortisol into cortisone. The cDNA of the human GR was inserted into pcDNA3 for a transient transfection of COS-7 cells. Human GR transactivation activity was measured from a luciferase-MMTV reporter gene. The transfected COS-7 cells were cultured using 10(-12) to 10(-5) M dexamethasone (DEX) or cortisol, which triggered the reporter expression. Treatment with 10(-12) to 10(-5) M DHEA, 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA caused no change in the GC-induced GR transactivation. A reconstruction of the process associated EGFP to the human GR cDNA. Confocal microscopic examination of COS-7 cells transiently expressing the fusion protein EGFP-GR showed nuclear fluorescence 60 min after incubation with 10(-8) M DEX or cortisol. The addition of 10(-5) M DHEA, 7alpha-hydroxy-DHEA or 7beta-hydroxy-DHEA did not change its kinesis and intensity. These results contribute to the knowledge of DHEA, 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA, in relation to antiglucocorticoid activity. We conclude that direct interference with GR trafficking can be discounted in the case of these hormones, therefore proposing new possibilities of investigation.
Assuntos
Desidroepiandrosterona/análogos & derivados , Desidroepiandrosterona/metabolismo , Desidroepiandrosterona/farmacologia , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional/efeitos dos fármacos , Animais , Células COS , Chlorocebus aethiops , Humanos , Hidroxilação , Transporte Proteico/efeitos dos fármacos , EstereoisomerismoRESUMO
A gain of function mutation resulting in the substitution of leucine for serine at codon 810 (S810L) in the human mineralocorticoid receptor (MR) is responsible for early-onset hypertension that is exacerbated in pregnancy. All steroids, including progesterone, that display antagonist properties when bound to the wild-type MR are able to activate the mutant receptor (MR(L810)). These findings suggest that progesterone may contribute to the dramatic aggravation of hypertension in MR(L810) carriers during pregnancy. However, the steroid(s) responsible for hypertension in MR(L810) carriers (men and nonpregnant women) has not yet been identified. Here we show that cortisone and 11-dehydrocorticosterone, the main cortisol and corticosterone metabolites produced in the distal nephron, where sodium reabsorption stimulated by aldosterone takes place, bind with high affinity to MR(L810). The potency with which cortisone and 11-dehydrocorticosterone bind to the mutant MR contrasts sharply with their low wild-type MR-binding capacity. In addition, cotransfection assays demonstrate that cortisone and 11-dehydrocorticosterone are potent activators of the MR(L810) trans-activation function. Because the plasma concentration of cortisol in humans is about 30-fold higher than that of corticosterone, these findings strongly suggest that cortisone is one of the endogenous steroids responsible for early-onset hypertension in men and nonpregnant women carrying the MR(L810) mutation.