Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(2)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36837646

RESUMO

Pressure-based membrane processes represent excellent water resource recovery prospects from industrial waste streams. In contrast with conventional pretreatment technologies, studies have shown that membrane pretreatment applications, such as microfiltration (MF), are more cost-effective and improve the results of the overall treatment processes. Hence, enhancing rejection efficiency of MF will enhance the performance of any downstream treatment processes. In this study, 0.45 µm cellulose acetate (CA) microfiltration membranes were modified by vacuum filtration-assisted layer-by-layer deposition of bilayers composed of negatively charged graphene oxide (GO) and positively charged polyethyleneimine (PEI). The performance of 1-, 2-, and 4-bilayer GO-PEI-modified membranes were investigated for their dye-rejection of anionic eriochrome black T (EBT) dye and cationic methylene blue (MB) dye in a cross-flow membrane module. As the number of bilayers on the membrane increased, the membrane thicknesses increased, and the deionized (DI) water flux through the membranes decreased from 4877 LMH/bar for the control (no bilayer) membrane to 2890 LMH/bar for the 4-bilayer membrane. Conversely, the dye-rejection performance of the modified membranes increased as increasing bilayers of GO-PEI deposited on the membranes. The anionic EBT dye saw superior rejection (~90% rejection) compared to the cationic MB dye (~80% rejection), which can be attributable to the electrostatic repulsion between the negatively charged GO surface and anionic EBT dye. After 50% recovery of the saline and dye-laden feed water, there was an observed drop in DI water fluxes of ~40-41% and 36%, respectively. There was also a slight increase in EBT dye-rejection during the composite feed-water experiments, attributed to the precipitation of salts on the membrane feed side or pore spaces, which subsequently reduce the membrane pore sizes.

2.
Phys Chem Chem Phys ; 23(34): 18694-18706, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612407

RESUMO

The electronic properties of BaTiO3 perovskite oxides are not completely understood, despite their excellent electro-optical performance and potential for light generation. Particularly, when there is multiple peak formation in the photoluminescence spectra, their origins are not discussed. Their luminescence spectra reveal an unexpected thermodynamic relationship between the core excitonic states and the surface of the BaTiO3. These results give a broad insight into the origins of the emission properties of perovskite oxides. The self-trapped excitons contribution to the broadbands highlights their extrinsic origin. Through spectroscopy techniques and parallel factor analysis (PARAFAC) modeling, we demonstrate that additional broadbands are sensitive to extrinsic defects, type ν-CH3, a product of decomposition of 2-propanol. The presence of C-H bonds shows the dependence with the calcination temperature and the increase of the lattice expansion coefficient until 4.7 × 10-6 K-1 resulting in the contribution to the change of band gap with the temperature ((dEg/dT)P). In this work, we correlated the electronic properties of BaTiO3 with intrinsic and extrinsic defects and elucidated the presence of additional broadbands. This approach differentiates the contributions of excitonic states and surfaces, which is necessary to understand the electronic properties of perovskite oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA