Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Ecol Evol ; 13(9): e10531, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37736275

RESUMO

Eucalyptus snout beetles are a complex of at least eight cryptic species (Curculionidae: Gonipterus scutellatus complex), native to mainland Australia and Tasmania, that defoliate Eucalyptus trees and are considered important pests. Since the 19th century, three species of the complex have been introduced to other continents. Here, we document the presence of Eucalyptus snout beetles in Ecuador. We used DNA data for species identification and unambiguously demonstrated that the Ecuadorian specimens belong to the species Gonipterus platensis, which has low genetic diversity compared with other species in the complex. We analyzed G. platensis' potential distribution in South America with ecological niche models and found several areas of high to intermediate climatic suitability, even in countries where the pest has not been registered, like Peru and Bolivia. Accurate identification of species in the G. scutellatus complex and understanding of their potential distribution are essential tools for improved management and prevention tactics.


Los gorgojos del eucalipto son un complejo de al menos ocho especies crípticas (Curculionidae: complejo Gonipterus scutellatus), nativos de Australia continental y Tasmania, que defolian árboles de eucalipto y son considerados como plagas de importancia. Desde el siglo 19, tres especies de este complejo se han introducido a otros continentes. En este trabajo reportamos la presencia de gorgojos del eucalipto en Ecuador. Usamos datos genéticos para la identificación específica y demostramos claramente que los especímenes ecuatorianos pertenecen a la especie Gonipterus platensis, la cual tiene baja diversidad genética comparada con otras especies en el complejo. Analizamos la distribución potencial de G. platensis en América del Sur con modelos de nicho ecológico y encontramos varias áreas con idoneidad ambiental alta a intermedia, incluso en países donde esta especie no ha sido registrada, como Perú y Bolivia. La correcta identificación de las especies del complejo Gonipterus scutellatus y una mejor comprensión de su distribución potencial constituyen herramientas fundamentales para optimizar medidas de manejo y prevención.

2.
PeerJ ; 10: e13211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462758

RESUMO

The Andean cloud forests of Ecuador are home to several endemic mammals. Members of the Thomasomyini rodents are well represented in the Andes, with Thomasomys being the largest genus (47 species) of the subfamily Sigmodontinae. Within this tribe, however, there are genera that have escaped a taxonomic revision, and Chilomys Thomas, 1897, constitutes a paradigmatic example of these "forgotten" Andean cricetids. Described more than a century ago, current knowledge of this externally unmistakable montane rodent is very limited, and doubts persist as to whether or not it is monotypic. After several years of field efforts in Ecuador, a considerable quantity of specimens of Chilomys were collected from various localities representing both Andean chains. Based on an extensive genetic survey of the obtained material, we can demonstrate that what is currently treated as C. instans in Ecuador is a complex comprising at least five new species which are described in this paper. In addition, based on these noteworthy new evidence, we amend the generic diagnosis in detail, adding several key craniodental traits such as incisor procumbency and microdonty. These results indicate that Chilomys probably has a hidden additional diversity in large parts of the Colombian and Peruvian territories, inviting a necessary revision of the entire genus.


Assuntos
Arvicolinae , Roedores , Animais , Equador , Sigmodontinae , Florestas
3.
Pathogens ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430264

RESUMO

Understanding the blood meal patterns of insects that are vectors of diseases is fundamental in unveiling transmission dynamics and developing strategies to impede or decrease human-vector contact. Chagas disease has a complex transmission cycle that implies interactions between vectors, parasites and vertebrate hosts. In Ecuador, limited data on human infection are available; however, the presence of active transmission in endemic areas has been demonstrated. The aim of this study was to determine the diversity of hosts that serve as sources of blood for triatomines in domestic, peridomestic and sylvatic transmission cycles, in two endemic areas of Ecuador (central coastal and southern highland regions). Using conserved primers and DNA extracted from 507 intestinal content samples from five species of triatomines (60 Panstrongylus chinai, 17 Panstrongylus howardi, 1 Panstrongylus rufotuberculatus, 427 Rhodnius ecuadoriensis and 2 Triatoma carrioni) collected from 2006 to 2013, we amplified fragments of the cytb mitochondrial gene. After sequencing, blood meal sources were identified in 416 individuals (146 from central coastal and 270 from southern highland regions), achieving ≥ 95% identity with GenBank sequences (NCBI-BLAST tool). The results showed that humans are the main source of food for triatomines, indicating that human-vector contact is more frequent than previously thought. Although other groups of mammals, such as rodents, are also an available source of blood, birds (particularly chickens) might have a predominant role in the maintenance of triatomines in these areas. However, the diversity of sources of blood found might indicate a preference driven by triatomine species. Moreover, the presence of more than one source of blood in triatomines collected in the same place indicated that dispersal of vectors occurs regardless the availability of food. Dispersal capacity of triatomines needs to be evaluated to propose an effective strategy that limits human-vector contact and, in consequence, to decrease the risk of T. cruzi transmission.

4.
PeerJ ; 8: e10247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240614

RESUMO

The Andean cloud forests of western Colombia and Ecuador are home to several endemic mammals; members of the Oryzomyini, the largest Sigmodontinae tribe, are extensively represented in the region. However, our knowledge about this diversity is still incomplete, as evidenced by several new taxa that have been described in recent years. Extensive field work in two protected areas enclosing remnants of Chocó montane forest recovered a high diversity of small mammals. Among them, a medium-sized oryzomyine is here described as a new genus having at least three new species, two of them are named and diagnosed. Although externally similar to members of the genera Nephelomys and Tanyuromys, the new genus has a unique molar pattern within the tribe, being characterized by a noticeable degree of hypsodonty, simplification, lamination, and third molar compression. A phylogeny based on a combination of molecular markers, including nuclear and mitochondrial genes, and morphological data recovered the new genus as sister to Mindomys, and sequentially to Nephelomys. The new genus seems to be another example of a sigmodontine rodent unique to the Chocó biogeographic region. Its type species inhabits cloud forest between 1,600 and 2,300 m in northernmost Ecuador (Carchi Province); a second species is restricted to lower montane forest, 1,200 m, in northern Ecuador (Imbabura Province); a third putative species, here highlighted exclusively by molecular evidence from one immature specimen, is recorded in the montane forest of Reserva Otonga, northern Ecuador (Cotopaxi Province). Finally, the new genus is also recorded in southernmost Colombia (Nariño Department), probably represented there also by a new species. These species are spatially separated by deep river canyons through Andean forests, resulting in marked environmental discontinuities. Unfortunately, Colombian and Ecuadorian Pacific cloud forests are under rapid anthropic transformation. Although the populations of the type species are moderately abundant and occur in protected areas, the other two persist in threatened forest fragments.

5.
Parasit Vectors ; 11(1): 567, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373640

RESUMO

BACKGROUND: The white-naped squirrel, Simosciurus nebouxii (previously known as Sciurus stramineus), has recently been identified as an important natural host for Trypanosoma cruzi in Ecuador. The nests of this species have been reported as having high infestation rates with the triatomine vector Rhodnius ecuadoriensis. The present study aims to determine the levels of nest infestation with R. ecuadoriensis, the ecological variables that are influencing the nest site selection, and the relationship between R. ecuadoriensis infestation and trypanosome infection. RESULTS: The study was carried out in transects in forest patches near two rural communities in southern Ecuador. We recorded ecological information of the trees that harbored squirrel nests and the trees within a 10 m radius. Manual examinations of each nest determined infestation with triatomines. We recorded 498 trees (n = 52 with nests and n = 446 without nests). Rhodnius ecuadoriensis was present in 59.5% of the nests and 60% presented infestation with nymphs (colonization). Moreover, we detected T. cruzi in 46% of the triatomines analyzed. CONCLUSIONS: We observed that tree height influences nest site selection, which is consistent with previous observations of squirrel species. Factors such as the diameter at breast height and the interaction between tree height and tree species were not sufficient to explain squirrel nest presence or absence. However, the nest occupancy and tree richness around the nest were significant predictors of the abundance of triatomines. Nevertheless, the variables of colonization and infection were not significant, and the data observed could be expected because of chance alone (under the null hypothesis). This study ratifies the hypothesis that the ecological features of the forest patches around rural communities in southern Ecuador favor the presence of nesting areas for S. nebouxii and an increase of the chances of having triatomines that maintain T. cruzi populations circulating in areas near human dwellings. Additionally, these results highlight the importance of including ecological studies to understand the dynamics of T. cruzi transmission due to the existence of similar ecological and land use features along the distribution of the dry forest of southern Ecuador and northern Peru, which implies similar challenges for Chagas disease control.


Assuntos
Doença de Chagas/transmissão , Insetos Vetores/parasitologia , Rhodnius/parasitologia , Sciuridae/parasitologia , Trypanosoma cruzi/fisiologia , Animais , Doença de Chagas/epidemiologia , Ecologia , Ecossistema , Equador/epidemiologia , Feminino , Florestas , Humanos , Masculino , Ninfa , Peru/epidemiologia , Árvores , Trypanosoma cruzi/isolamento & purificação
6.
Ecohealth ; 13(4): 698-707, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27655649

RESUMO

Habitat disturbance and anthropogenic change are globally associated with extinctions and invasive species introductions. Less understood is the impact of environmental change on the parasites harbored by endangered, extinct, and introduced species. To improve our understanding of the impacts of anthropogenic disturbance on such host-parasite interactions, we investigated an invasive trypanosome (Trypanosoma lewisi). We screened 348 individual small mammals, representing 26 species, from both forested and non-forested habitats in rural Uganda. Using microscopy and PCR, we identified 18% of individuals (order Rodentia) as positive for trypanosomes. Further phylogenetic analyses revealed two trypanosomes circulating-T. lewisi and T. varani. T. lewisi was found in seven species both native and invasive, while T. varani was identified in only three native forest species. The lack of T. varani in non-forested habitats suggests that it is a natural parasite of forest-dwelling rodents. Our findings suggest that anthropogenic disturbance may lead to spillover of an invasive parasite (T. lewisi) from non-native to native species, and lead to local co-extinction of a native parasite (T. varani) and native forest-dwelling hosts.


Assuntos
Doenças dos Roedores , Roedores/parasitologia , Tripanossomíase/veterinária , Animais , Humanos , Filogenia , Uganda
7.
Biodivers Data J ; (4): e8184, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27226760

RESUMO

BACKGROUND: The Shiny Cowbird, Molothrus bonariensis Gmelin, 1789, is a brood parasite of hundreds of small-bodied birds that is native to South American lowlands. Within the last 100 years this species has been expanding its range throughout the Caribbean, towards North America, but has rarely been seen above 2,000 m asl. NEW INFORMATION: Here, we present records of Shiny Cowbirds in Quito, a city located 2,800 m above sea level that harbors a bird community typical of the Andean valleys. We found two juvenile individuals parasitizing two different pairs of Rufous-collared Sparrow (Zonotrichia capensis Müller, 1776). This report constitutes an altitudinal range expansion of reproductive populations of ca. 500m, which may have beenprompted by anthropogenic disturbance.

8.
Int J Parasitol Parasites Wildl ; 5(1): 40-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26977404

RESUMO

Trypanosomes are a diverse group of protozoan parasites of vertebrates transmitted by a variety of hematophagous invertebrate vectors. Anuran trypanosomes and their vectors have received relatively little attention even though these parasites have been reported from frog and toad species worldwide. Blood samples collected from túngara frogs (Engystomops pustulosus), a Neotropical anuran species heavily preyed upon by eavesdropping frog-biting midges (Corethrella spp.), were examined for trypanosomes. Our results revealed sexual differences in trypanosome prevalence with female frogs being rarely infected (<1%). This finding suggests this protozoan parasite may be transmitted by frog-biting midges that find their host using the mating calls produced by male frogs. Following previous anuran trypanosome studies, we examined 18S ribosomal RNA gene to characterize and establish the phylogenetic relationship of the trypanosome species found in túngara frogs. A new species of giant trypanosome, Trypanosoma tungarae n. sp., is described in this study. Overall the morphometric data revealed that the trypomastigotes of T. tungarae n. sp. are similar to other giant trypanosomes such as Trypanosoma rotatorium and Trypanosoma ranarum. Despite its slender and long cell shape, however, 18S rRNA gene sequences revealed that T. tungarae n. sp. is sister to the rounded-bodied giant trypanosome, Trypanosoma chattoni. Therefore, morphological convergence explains similar morphology among members of two non-closely related groups of trypanosomes infecting frogs. The results from this study underscore the value of coupling morphological identification with molecular characterization of anuran trypanosomes.

9.
Parasit Vectors ; 8: 657, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26701154

RESUMO

BACKGROUND: Bat trypanosomes are implicated in the evolution of the T. cruzi clade, which harbours most African, European and American trypanosomes from bats and other trypanosomes from African, Australian and American terrestrial mammals, including T. cruzi and T. rangeli, the agents of the American human trypanosomiasis. The diversity of bat trypanosomes globally is still poorly understood, and the common ancestor, geographical origin, and evolution of species within the T. cruzi clade remain largely unresolved. METHODS: Trypanosome sequences were obtained from cultured parasites and from museum archived liver/blood samples of bats captured from Guatemala (Central America) to the Brazilian Atlantic Coast. Phylogenies were inferred using Small Subunit (SSU) rRNA, glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH), and Spliced Leader (SL) RNA genes. RESULTS: Here, we described Trypanosoma wauwau n. sp. from Pteronotus bats (Mormoopidae) placed in the T. cruzi clade, then supporting the bat-seeding hypothesis whereby the common ancestor of this clade likely was a bat trypanosome. T. wauwau was sister to the clade T. spp-Neobats from phyllostomid bats forming an assemblage of trypanosome species exclusively of Noctilionoidea Neotropical bats, which was sister to an Australian clade of trypanosomes from indigenous marsupials and rodents, which possibly evolved from a bat trypanosome. T. wauwau was found in 26.5% of the Pteronotus bats examined, and phylogeographical analysis evidenced the wide geographical range of this species. To date, this species was not detected in other bats, including those that were sympatric or shared shelters with Pteronotus. T. wauwau did not develop within mammalian cells, and was not infective to Balb/c mice or to triatomine vectors of T. cruzi and T. rangeli. CONCLUSIONS: Trypanosoma wauwau n. sp. was linked to Pteronotus bats. The positioning of the clade T. wauwau/T.spp-Neobats as the most basal Neotropical bat trypanosomes and closely related to an Australian lineage of trypanosomes provides additional evidence that the T. cruzi clade trypanosomes likely evolved from bats, and were dispersed in bats within and between continents from ancient to unexpectedly recent times.


Assuntos
Evolução Molecular , Variação Genética , Trypanosoma cruzi/classificação , Trypanosoma cruzi/genética , Animais , Austrália , Brasil , América Central , Quirópteros , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 18S/genética , RNA Líder para Processamento , Análise de Sequência de DNA , Homologia de Sequência , Trypanosoma cruzi/isolamento & purificação
10.
Vector Borne Zoonotic Dis ; 15(12): 732-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26645579

RESUMO

Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru.


Assuntos
Doença de Chagas/epidemiologia , Variação Genética , Insetos Vetores/parasitologia , Rhodnius/parasitologia , Trypanosoma cruzi/genética , Trypanosoma rangeli/genética , Animais , Sequência de Bases , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , DNA Ribossômico/química , DNA Ribossômico/genética , Equador/epidemiologia , Meio Ambiente , Geografia , Humanos , Mamíferos , Dados de Sequência Molecular , Fenótipo , Prevalência , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Trypanosoma cruzi/isolamento & purificação , Trypanosoma rangeli/isolamento & purificação , Zoonoses
11.
PLoS One ; 10(10): e0139999, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26465748

RESUMO

The generalist parasite Trypanosoma cruzi has two phylogenetic lineages associated almost exclusively with bats-Trypanosoma cruzi Tcbat and the subspecies T. c. marinkellei. We present new information on the genetic variation, geographic distribution, host associations, and potential vectors of these lineages. We conducted field surveys of bats and triatomines in southern Ecuador, a country endemic for Chagas disease, and screened for trypanosomes by microscopy and PCR. We identified parasites at species and genotype levels through phylogenetic approaches based on 18S ribosomal RNA (18S rRNA) and cytochrome b (cytb) genes and conducted a comparison of nucleotide diversity of the cytb gene. We document for the first time T. cruzi Tcbat and T. c. marinkellei in Ecuador, expanding their distribution in South America to the western side of the Andes. In addition, we found the triatomines Cavernicola pilosa and Triatoma dispar sharing shelters with bats. The comparisons of nucleotide diversity revealed a higher diversity for T. c. marinkellei than any of the T. c. cruzi genotypes associated with Chagas disease. Findings from this study increased both the number of host species and known geographical ranges of both parasites and suggest potential vectors for these two trypanosomes associated with bats in rural areas of southern Ecuador. The higher nucleotide diversity of T. c. marinkellei supports a long evolutionary relationship between T. cruzi and bats, implying that bats are the original hosts of this important parasite.


Assuntos
Doença de Chagas/genética , Quirópteros/genética , Filogeografia , Trypanosoma cruzi/genética , Animais , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Quirópteros/parasitologia , Equador , Genótipo , Humanos , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Trypanosoma cruzi/patogenicidade
12.
Acta Trop ; 151: 166-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26200788

RESUMO

Trypanosoma cruzi is a complex of phenotypically and genetically diverse isolates distributed in six discrete typing units (DTUs) designated as TcI-TcVI. Five years ago, T. cruzi isolates from Brazilian bats showing unique patterns of traditional ribosomal and spliced leader PCRs not clustering into any of the six DTUs were designated as the Tcbat genotype. In the present study, phylogenies inferred using SSU rRNA (small subunit of ribosomal rRNA), gGAPDH (glycosomal glyceraldehyde 3-phosphate dehydrogenase) and Cytb (cytochrome b) genes strongly supported Tcbat as a monophyletic lineage prevalent in Brazil, Panama and Colombia. Providing strong support for Tcbat, sequences from 37 of 47 nuclear and 12 mitochondrial genes (retrieved from a draft genome of Tcbat) and reference strains of all DTUs available in databanks corroborated Tcbat as an independent DTU. Consistent with previous studies, multilocus analysis of most nuclear genes corroborated the evolution of T. cruzi from bat trypanosomes its divergence into two main phylogenetic lineages: the basal TcII; and the lineage clustering TcIV, the clade comprising TcIII and the sister groups TcI-Tcbat. Most likely, the common ancestor of Tcbat and TcI was a bat trypanosome. However, the results of the present analysis did not support Tcbat as the ancestor of all DTUs. Despite the insights provided by reports of TcIII, TcIV and TcII in bats, including Amazonian bats harbouring TcII, further studies are necessary to understand the roles played by bats in the diversification of all DTUs. We also demonstrated that in addition to value as molecular markers for DTU assignment, Cytb, ITS rDNA and the spliced leader (SL) polymorphic sequences suggest spatially structured populations of Tcbat. Phylogenetic and phylogeographical analyses, multiple molecular markers specific to Tcbat, and the degrees of sequence divergence between Tcbat and the accepted DTUs strongly support the definitive classification of Tcbat as a new DTU.


Assuntos
Evolução Biológica , Doença de Chagas/parasitologia , Quirópteros/parasitologia , Tipagem de Sequências Multilocus , Trypanosoma cruzi/genética , Trypanosoma cruzi/isolamento & purificação , Animais , Brasil , Colômbia , Variação Genética , Genótipo , Panamá , Filogenia , Filogeografia
13.
PLoS One ; 9(9): e108603, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25268381

RESUMO

The Trypanosoma cruzi clade is a group of parasites that comprises T. cruzi sensu lato and its closest relatives. Although several species have been confirmed phylogenetically to belong to this clade, it is uncertain how many more species can be expected to belong into this group. Here, we present the results of a survey of trypanosome parasites of the bat Artibeus jamaicensis from the Panamá Canal Zone, an important seed disperser. Using a genealogical species delimitation approach, the Poisson tree processes (PTP), we tentatively identified five species of trypanosomes - all belonging to the T. cruzi clade. A small monophyletic group of three putative Trypanosoma species places at the base of the clade phylogeny, providing evidence for at least five independent colonization events of these parasites into the New World. Artibeus jamaicensis presents a high diversity of these blood parasites and is the vertebrate with the highest number of putative trypanosome species reported from a single locality. Our results emphasize the need for continued efforts to survey mammalian trypanosomes.


Assuntos
Doença de Chagas/veterinária , Quirópteros/parasitologia , Genes de Protozoários , Filogenia , RNA Ribossômico 18S/genética , Trypanosoma cruzi/genética , Animais , Sequência de Bases , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , Variação Genética , Dados de Sequência Molecular , Panamá , Filogeografia , Trypanosoma cruzi/classificação , Trypanosoma cruzi/isolamento & purificação
14.
Zookeys ; (324): 1-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24003317

RESUMO

We present the first comprehensive taxonomic revision and review the biology of the olingos, the endemic Neotropical procyonid genus Bassaricyon, based on most specimens available in museums, and with data derived from anatomy, morphometrics, mitochondrial and nuclear DNA, field observations, and geographic range modeling. Species of Bassaricyon are primarily forest-living, arboreal, nocturnal, frugivorous, and solitary, and have one young at a time. We demonstrate that four olingo species can be recognized, including a Central American species (Bassaricyon gabbii), lowland species with eastern, cis-Andean (Bassaricyon alleni) and western, trans-Andean (Bassaricyon medius) distributions, and a species endemic to cloud forests in the Andes. The oldest evolutionary divergence in the genus is between this last species, endemic to the Andes of Colombia and Ecuador, and all other species, which occur in lower elevation habitats. Surprisingly, this Andean endemic species, which we call the Olinguito, has never been previously described; it represents a new species in the order Carnivora and is the smallest living member of the family Procyonidae. We report on the biology of this new species based on information from museum specimens, niche modeling, and fieldwork in western Ecuador, and describe four Olinguito subspecies based on morphological distinctions across different regions of the Northern Andes.

15.
J Parasitol ; 99(4): 722-4, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23240742

RESUMO

We provide the first evidence of Hepatozoon parasites infecting bats. We sequenced a short fragment of the 18S rRNA gene (~600 base pairs) of Hepatozoon parasites from 3 Hipposideros cervinus bats from Borneo. Phylogenies inferred by model-based methods place these Hepatozoon within a clade formed by parasites of reptiles, rodents, and marsupials. We discuss the scenario that bats might be common hosts of Hepatozoon.


Assuntos
Quirópteros/parasitologia , Coccídios/classificação , Coccidiose/veterinária , DNA Ribossômico/química , RNA Ribossômico 18S/genética , Animais , Teorema de Bayes , Coccídios/genética , Coccídios/isolamento & purificação , Coccidiose/parasitologia , DNA de Protozoário/química , Funções Verossimilhança , Filogenia , RNA de Protozoário/genética , Alinhamento de Sequência/veterinária
16.
Infect Genet Evol ; 12(6): 1328-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22543008

RESUMO

We report TcBat, a recently described genetic lineage of Trypanosoma cruzi, in fruit-eating bats Artibeus from Panama. Infections were common (11.6% prevalence), but no other T. cruzi cruzi genotypes were detected. Phylogenetic analyses show an unambiguous association with Brazilian TcBat, but raise questions about the phylogenetic placement of this genotype using the 18S rRNA gene alone. However, analyses with three concatenated genes (18S rRNA, cytb, and H2B) moderately support TcBat as sister to the discrete typing unit (DTU) TcI. We demonstrate that short fragments (>500 bp) of the 18S rRNA gene are useful for identification of DTUs of T. cruzi, and provide reliable phylogenetic signal as long as they are analyzed within a matrix with reference taxa containing additional informative genes. TcBat forms a very distinctive monophyletic group that may be recognized as an additional DTU within T. cruzi cruzi.


Assuntos
Doença de Chagas/veterinária , Quirópteros/parasitologia , RNA Ribossômico 18S/genética , Trypanosoma cruzi/classificação , Animais , Doença de Chagas/sangue , Doença de Chagas/parasitologia , Quirópteros/sangue , Análise por Conglomerados , DNA de Protozoário/sangue , Reservatórios de Doenças/parasitologia , Reservatórios de Doenças/veterinária , Marcadores Genéticos , Zona do Canal do Panamá , Filogenia , Trypanosoma cruzi/genética
17.
Mol Biol Evol ; 27(11): 2642-50, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20558596

RESUMO

Taste perception is an important component of an animal's fitness. The identification of vertebrate taste receptor genes in the last decade has enabled molecular genetic studies of the evolution of taste perception in the context of the ecology and dietary preferences of organisms. Although such analyses have been conducted in a number of species for bitter taste receptors, a similar analysis of sweet taste receptors is lacking. Here, we survey the sole sweet taste-specific receptor gene Tas1r2 in 42 bat species that represent all major lineages of the order Chiroptera, one of the most diverse groups of mammals in terms of diet. We found that Tas1r2 is under strong purifying selection in the majority of the bats studied, with no significant difference in the strength of the selection between insect eaters and fruit eaters. However, Tas1r2 is a pseudogene in all three vampire bat species and the functional relaxation likely started in their common ancestor, probably due to the exclusive feeding of vampire bats on blood and their reliance on infrared sensors rather than taste perception to locate blood sources. Our survey of available genome sequences, together with previous reports, revealed additional losses of Tas1r2 in horse, cat, chicken, zebra finch, and western clawed frog, indicating that sweet perception is not as conserved as previously thought. Nonetheless, we found no common dietary pattern among the Tas1r2-lacking vertebrates, suggesting different causes for the losses of Tas1r2 in different species. The complexity of the ecological factors that impact the evolution of Tas1r2 calls for a better understanding of the physiological roles of sweet perception in different species.


Assuntos
Quirópteros/genética , Evolução Molecular , Receptores Acoplados a Proteínas G/genética , Paladar/genética , Animais , Sequência de Bases , Comportamento Alimentar , Frutas , Genoma/genética , Insetos , Funções Verossimilhança , Dados de Sequência Molecular , Filogenia , Pseudogenes/genética , Seleção Genética , Alinhamento de Sequência
19.
J Parasitol ; 92(6): 1251-5, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17304802

RESUMO

Small mammals trapped in domestic and peridomestic environments of rural Ecuador were screened for trypanosome infection by direct microscopy and hemoculture. Identification of species of trypanosomes was then performed by morphological characteristics and by polymerase chain reaction (PCR) assays. Of 194 animals collected, 15 were positive for infection (7.73%). Eight (4.12%) were infected with Trypanosoma cruzi (1 of 33 Didelphis marsupialis; 7 of 61 Rattus rattus). Eleven R. rattus (18.03%) harbored T. lewisi, 5 of which presented mixed infections with T. cruzi. Additionally, 1 of 3 Oryzomys xanthaeolus was infected with T. rangeli. No trypanosome infection was detected in Philander opossum (n = 1), Mus musculus (n = 79), Rattus norvegicus (n = 8), Akodon orophilus (n = 4), Sigmodon peruanus (n = 3), or Proechimys decumanus (n = 2). Many of the isolates belong to T. cruzi, the causative agent of Chagas disease, and R. rattus had the highest prevalence. Because of its abundance in the study areas, this species is considered an important reservoir for Chagas disease. This is the first report of T. lewisi and T. rangeli in Ecuador. This study is also the first to describe natural mixed infections of T. cruzi-T. lewisi.


Assuntos
Doença de Chagas/veterinária , Didelphis/parasitologia , Ratos/parasitologia , Doenças dos Roedores/epidemiologia , Trypanosoma lewisi/isolamento & purificação , Tripanossomíase/veterinária , Animais , Doença de Chagas/epidemiologia , Equador/epidemiologia , Habitação , Humanos , Prevalência , Doenças dos Roedores/parasitologia , Saúde da População Rural , Sigmodontinae/parasitologia , Trypanosoma cruzi/isolamento & purificação , Tripanossomíase/epidemiologia , Tripanossomíase/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA