Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Appl Phys Lett ; 125(17): 173702, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39444380

RESUMO

We study the high-frequency, micro-mechanical response of suspensions composed of cardiac and skeletal muscle myosin by optical trapping interferometry. We observe that in low ionic strength solutions, upon the addition of magnesium adenosine triphosphate (MgATP2-), myosin suspensions radically change their micro-mechanics properties, generating a viscoelastic fluid characterized by a complex modulus similar to a suspension of worm-like micelles. This transduction of energy, from chemical to mechanical, may be related to the relaxed states of myosin, which regulate muscle contractility and can be involved in the etiology of many myopathies. Within an analogous generic mechanical response, cardiac and skeletal myosin suspensions provide different stress relaxation times, elastic modulus values, and characteristic lengths. These discrepancies probably rely on the dissimilar physiological functions of cardiac and skeletal muscle, on the different MgATPase hydrolysis rates of cardiac and skeletal myosins, and on the observed distinct cooperative behavior of their myosin heads in the super-relaxed state. In vitro studies like these allow us to understand the foundations of muscle cell mechanics on the micro-scale, and may contribute to the engineering of biological materials whose micro-mechanics can be activated by energy regulators.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38587113

RESUMO

Post-translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N-terminal head domain, while the two MyHC C-terminal tails form a coiled-coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine-tuning the activity of these proteins.

3.
J Mol Biol ; 436(6): 168498, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387550

RESUMO

Cardiac muscle contraction occurs due to repetitive interactions between myosin thick and actin thin filaments (TF) regulated by Ca2+ levels, active cross-bridges, and cardiac myosin-binding protein C (cMyBP-C). The cardiac TF (cTF) has two nonequivalent strands, each comprised of actin, tropomyosin (Tm), and troponin (Tn). Tn shifts Tm away from myosin-binding sites on actin at elevated Ca2+ levels to allow formation of force-producing actomyosin cross-bridges. The Tn complex is comprised of three distinct polypeptides - Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. The molecular mechanism of their collective action is unresolved due to lack of comprehensive structural information on Tn region of cTF. C1 domain of cMyBP-C activates cTF in the absence of Ca2+ to the same extent as rigor myosin. Here we used cryo-EM of native cTFs to show that cTF Tn core adopts multiple structural conformations at high and low Ca2+ levels and that the two strands are structurally distinct. At high Ca2+ levels, cTF is not entirely activated by Ca2+ but exists in either partially or fully activated state. Complete dissociation of TnI C-terminus is required for full activation. In presence of cMyBP-C C1 domain, Tn core adopts a fully activated conformation, even in absence of Ca2+. Our data provide a structural description for the requirement of myosin to fully activate cTFs and explain increased affinity of TnC to Ca2+ in presence of active cross-bridges. We suggest that allosteric coupling between Tn subunits and Tm is required to control actomyosin interactions.


Assuntos
Actinas , Troponina , Actinas/metabolismo , Actomiosina , Cálcio/metabolismo , Microscopia Crioeletrônica , Miosinas/química , Tropomiosina/química , Troponina/química , Troponina/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(9): e2311883121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386705

RESUMO

Heart muscle has the unique property that it can never rest; all cardiomyocytes contract with each heartbeat which requires a complex control mechanism to regulate cardiac output to physiological requirements. Changes in calcium concentration regulate the thin filament activation. A separate but linked mechanism regulates the thick filament activation, which frees sufficient myosin heads to bind the thin filament, thereby producing the required force. Thick filaments contain additional nonmyosin proteins, myosin-binding protein C and titin, the latter being the protein that transmits applied tension to the thick filament. How these three proteins interact to control thick filament activation is poorly understood. Here, we show using 3-D image reconstruction of frozen-hydrated human cardiac muscle myofibrils lacking exogenous drugs that the thick filament is structured to provide three levels of myosin activation corresponding to the three crowns of myosin heads in each 429Å repeat. In one crown, the myosin heads are almost completely activated and disordered. In another crown, many myosin heads are inactive, ordered into a structure called the interacting heads motif. At the third crown, the myosin heads are ordered into the interacting heads motif, but the stability of that motif is affected by myosin-binding protein C. We think that this hierarchy of control explains many of the effects of length-dependent activation as well as stretch activation in cardiac muscle control.


Assuntos
Benzilaminas , Miocárdio , Sarcômeros , Uracila/análogos & derivados , Humanos , Miofibrilas , Miócitos Cardíacos , Miosinas
5.
Biochemistry ; 62(14): 2137-2146, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37379571

RESUMO

The disordered and basic C-terminal 14 residues of human troponin T (TnT) are essential for full inhibition of actomyosin ATPase activity at low Ca2+ levels and for limiting activation at saturating Ca2+. In previous studies, stepwise truncation of the C-terminal region of TnT increased activity in proportion to the number of positive charges eliminated. To define key basic residues more closely, we generated phosphomimetic-like mutants of TnT. Phosphomimetic mutants were chosen because of reports that phosphorylation of TnT, including sites within the C terminal region, depressed activity, contrary to our expectations. Four constructs were made where one or more Ser and Thr residues were replaced with Asp residues. The S275D and T277D mutants, near the IT helix and adjacent to basic residues, produced the greatest activation of ATPase rates in solution; the effects of the S275D mutant were recapitulated in muscle fiber preparations with enhanced myofilament Ca2+ sensitivity. Actin filaments containing S275D TnT were also shown to be incapable of populating the inactive state at low Ca2+ levels. Actin filaments containing both S275D/T284D were not statistically different from those containing only S275D in both solution and cardiac muscle preparation studies. Finally, actin filaments containing T284D TnT, closer to the C-terminus and not adjacent to a basic residue, had the smallest effect on activity. Thus, the effects of negative charge placement in the C-terminal region of TnT were greatest near the IT helix and adjacent to a basic residue.


Assuntos
Actinas , Troponina T , Humanos , Troponina T/genética , Troponina T/química , Actinas/química , Citoesqueleto de Actina , Miosinas/genética , Adenosina Trifosfatases , Cálcio/química , Tropomiosina/química
6.
Soft Matter ; 19(20): 3652-3660, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37165665

RESUMO

We investigate the local fluctuations of filamentous actin (F-actin), with a focus on the skeletal thin filament, using single-particle optical trapping interferometry. This experimental technique allows us to detect the Brownian motion of a tracer bead immersed in a complex fluid with nanometric resolution at the microsecond time-scale. The mean square displacement, loss modulus, and velocity autocorrelation function (VAF) of the trapped microprobes in the fluid follow power-law behaviors, whose exponents can be determined in the short-time/high-frequency regime over several decades. We obtain 7/8 subdiffusive power-law exponents for polystyrene depleted microtracers at low optical trapping forces. Microrheologically, the elastic modulus of these suspensions is observed to be constant up to the limit of high frequencies, confirming that the origin of this subdiffusive exponent is the local longitudinal fluctuations of the polymers. Deviations from this value are measured and discussed in relation to the characteristic length scales of these F-actin networks and probes' properties, and also in connection with the different power-law exponents detected in the VAFs. Finally, we observed that the thin filament, composed of tropomyosin (Tm) and troponin (Tn) coupled to F-actin in the presence of Ca2+, shows exponent values less dispersed than that of F-actin alone, which we interpret as a micro-measurement of the filament stabilization.

7.
PNAS Nexus ; 2(1): pgac298, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712934

RESUMO

Cardiac contraction depends on molecular interactions among sarcomeric proteins coordinated by the rising and falling intracellular Ca2+ levels. Cardiac thin filament (cTF) consists of two strands composed of actin, tropomyosin (Tm), and equally spaced troponin (Tn) complexes forming regulatory units. Tn binds Ca2+ to move Tm strand away from myosin-binding sites on actin to enable actomyosin cross-bridges required for force generation. The Tn complex has three subunits-Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. Tm strand is comprised of adjacent Tm molecules that overlap "head-to-tail" along the actin filament. The N-terminus of TnT (e.g., TnT1) binds to the Tm overlap region to form the cTF junction region-the region that connects adjacent regulatory units and confers to cTF internal cooperativity. Numerous studies have predicted interactions among actin, Tm, and TnT1 within the junction region, although a direct structural description of the cTF junction region awaited completion. Here, we report a 3.8 Å resolution cryo-EM structure of the native cTF junction region at relaxing (pCa 8) Ca2+ conditions. We provide novel insights into the "head-to-tail" interactions between adjacent Tm molecules and interactions between the Tm junction with F-actin. We demonstrate how TnT1 stabilizes the Tm overlap region via its interactions with the Tm C- and N-termini and actin. Our data show that TnT1 works as a joint that anchors the Tm overlap region to actin, which stabilizes the relaxed state of the cTF. Our structure provides insight into the molecular basis of cardiac diseases caused by missense mutations in TnT1.

8.
Arch Biochem Biophys ; 726: 109301, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35661778

RESUMO

After the discovery of troponin by Ebashi almost sixty years ago the field of striated muscle regulation has made significant progress. In the 1970's the nascent troponin field gained momentum, including contributions by James D. Potter who established the stoichiometry of contractile proteins in the myofibril (Arch Biochem Biophys. 1974 Jun; 162(2):436-41. https://doi.org/10.1016/0003-9861(7490202-1)). This opened the door to refinement of competing models that described possible thick filament configurations. This study suggested the presence of one myosin per cross bridge and provided accurate calculations of the molar ratios of each protein - myosin: actin: tropomyosin: troponin T: troponin I: troponin C.


Assuntos
Miofibrilas , Tropomiosina , Actinas/metabolismo , Animais , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Miosinas/metabolismo , Coelhos , Tropomiosina/metabolismo , Troponina C/metabolismo
9.
PeerJ ; 10: e13340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35497182

RESUMO

Background: Understanding how biotic and abiotic factors affect insect mortality is crucial for both fundamental knowledge of population ecology and for successful pest management. However, because these factors are difficult to quantify and interpret, patterns and dynamics of insect mortality remain unclear, especially comparative mortality across climate zones. Life table analysis provides robust information for quantifying population mortality and population parameters. Methods: In this study, we estimated cause-of-death probabilities and irreplaceable mortality (the portion of mortality that cannot be replaced by another cause or combination of causes) using a Multiple Decrement Life Table (MDLT) analysis of 268 insect life tables from 107 peer-reviewed journal articles. In particular, we analyzed insect mortality between temperate and tropical climate zones. Results: Surprisingly, our results suggest that non-natural enemy factors (abiotic) were the major source of insect mortality in both temperate and tropical zones. In addition, we observed that irreplaceable mortality from predators in tropical zones was 3.7-fold greater than in temperate zones. In contrast, irreplaceable mortality from parasitoids and pathogens was low and not different between temperate and tropical zones. Surprisingly, we did not observe differences in natural enemy and non-natural enemy factors based on whether the insect species was native or non-native. We suggest that characterizing predation should be a high priority in tropical conditions. Furthermore, because mortality from parasitoids was low in both tropical and temperate zones, this mortality needs to be better understood, especially as it relates to biological control and integrated pest management.


Assuntos
Ecologia , Insetos , Animais , Controle Biológico de Vetores , Clima Tropical
10.
Biophys J ; 121(4): 565-574, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032456

RESUMO

Myocyte disarray is a hallmark of many cardiac disorders. However, the relationship between alterations in the orientation of individual myofibrils and myofilaments to disease progression has been largely underexplored. This oversight has predominantly been because of a paucity of methods for objective and quantitative analysis. Here, we introduce a novel, less-biased approach to quantify myofibrillar and myofilament orientation in cardiac muscle under near-physiological conditions and demonstrate its superiority as compared with conventional histological assessments. Using small-angle x-ray diffraction, we first investigated changes in myofibrillar orientation at increasing sarcomere lengths in permeabilized, relaxed, wild-type mouse myocardium from the left ventricle by assessing the angular spread of the 1,0 equatorial reflection (angle σ). At a sarcomere length of 1.9 µm, the angle σ was 0.23 ± 0.01 rad, decreased to 0.19 ± 0.01 rad at a sarcomere length of 2.1 µm, and further decreased to 0.15 ± 0.01 rad at a sarcomere length of 2.3 µm (p < 0.0001). Angle σ was significantly larger in R403Q, a MYH7 hypertrophic cardiomyopathy model, porcine myocardium (0.24 ± 0.01 rad) compared with wild-type myocardium (0.14 ± 0.005 rad; p < 0.0001), as well as in human heart failure tissue (0.19 ± 0.006 rad) when compared with nonfailing samples (0.17 ± 0.007 rad; p = 0.01). These data indicate that diseased myocardium suffers from greater myofibrillar disorientation compared with healthy controls. Finally, we showed that conventional, histology-based analysis of disarray can be subject to user bias and/or sampling error and lead to false positives. Our method for directly assessing myofibrillar orientation avoids the artifacts introduced by conventional histological approaches that assess myocyte orientation and only indirectly evaluate myofibrillar orientation, and provides a precise and objective metric for phenotypically characterizing myocardium. The ability to obtain excellent x-ray diffraction patterns from frozen human myocardium provides a new tool for investigating structural anomalies associated with cardiac diseases.


Assuntos
Cardiomiopatia Hipertrófica , Miofibrilas , Animais , Ventrículos do Coração/patologia , Camundongos , Contração Miocárdica , Miocárdio/patologia , Sarcômeros , Suínos
11.
J Mol Cell Cardiol Plus ; 1: 100007, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37159677

RESUMO

Background: Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder with patients typically showing heterozygous inheritance of a pathogenic variant in a gene encoding a contractile protein. Here, we study the contractile effects of a rare homozygous mutation using explanted tissue and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to gain insight into how the balance between mutant and WT protein expression affects cardiomyocyte function. Methods: Force measurements were performed in cardiomyocytes isolated from a HCM patient carrying a homozygous troponin T mutation (cTnT-K280N) and healthy donors. To discriminate between mutation-mediated and phosphorylation-related effects on Ca2+-sensitivity, cardiomyocytes were treated with alkaline phosphatase (AP) or protein kinase A (PKA). Troponin exchange experiments characterized the relation between mutant levels and myofilament function. To define mutation-mediated effects on Ca2+-dynamics we used CRISPR/Cas9 to generate hiPSC-CMs harbouring heterozygous and homozygous TnT-K280N mutations. Ca2+-transient and cell shortening experiments compared these lines against isogenic controls. Results: Myofilament Ca2+-sensitivity was higher in homozygous cTnT-K280N cardiomyocytes and was not corrected by AP- and PKA-treatment. In cTnT-K280N cells exchanged with cTnT-WT, a low level (14%) of cTnT-K280N mutation elevated Ca2+-sensitivity. Similarly, exchange of donor cells with 45 ± 2% cTnT-K280N increased Ca2+-sensitivity and was not corrected by PKA. cTnT-K280N hiPSC-CMs show elevated diastolic Ca2+ and increases in cell shortening. Impaired cardiomyocyte relaxation was only evident in homozygous cTnT-K280N hiPSC-CMs. Conclusions: The cTnT-K280N mutation increases myofilament Ca2+-sensitivity, elevates diastolic Ca2+, enhances contractility and impairs cellular relaxation. A low level (14%) of the cTnT-K280N sensitizes myofilaments to Ca2+, a universal finding of human HCM.

12.
J Muscle Res Cell Motil ; 42(2): 399-417, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34255253

RESUMO

Ants use their mandibles for a variety of functions and behaviors. We investigated mandibular muscle structure and function from major workers of the Florida carpenter ant Camponotus floridanus: force-pCa relation and velocity of unloaded shortening of single, permeabilized fibres, primary sequences of troponin subunits (TnC, TnI and TnT) from a mandibular muscle cDNA library, and muscle fibre ultrastructure. From the mechanical measurements, we found Ca2+-sensitivity of isometric force was markedly shifted rightward compared with vertebrate striated muscle. From the troponin sequence results, we identified features that could explain the rightward shift of Ca2+-activation: the N-helix of TnC is effectively absent and three of the four EF-hands of TnC (sites I, II and III) do not adhere to canonical sequence rules for divalent cation binding; two alternatively spliced isoforms of TnI were identified with the alternatively spliced exon occurring in the region of the IT-arm α-helical coiled-coil, and the N-terminal extension of TnI may be involved in modulation of regulation, as in mammalian cardiac muscle; and TnT has a Glu-rich C-terminus. In addition, a structural homology model was built of C. floridanus troponin on the thin filament. From analysis of electron micrographs, we found thick filaments are almost as long as the 6.8 µm sarcomeres, have diameter of ~ 16 nm, and typical center-to-center spacing of ~ 46 nm. These results have implications for the mechanisms by which mandibular muscle fibres perform such a variety of functions, and how the structure of the troponin complex aids in these tasks.


Assuntos
Formigas , Troponina C , Animais , Formigas/metabolismo , Cálcio/metabolismo , Humanos , Invertebrados/metabolismo , Mandíbula/metabolismo , Músculo Esquelético/metabolismo , Troponina C/genética , Troponina C/metabolismo , Troponina T/genética , Troponina T/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 321(1): H1-H14, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33989084

RESUMO

We tested the hypothesis that adiponectin deficiency attenuates cardiac and coronary microvascular function and prevents exercise training-induced adaptations of the myocardium and the coronary microvasculature in adult mice. Adult wild-type (WT) or adiponectin knockout (adiponectin KO) mice underwent treadmill exercise training or remained sedentary for 8-10 wk. Systolic and diastolic functions were assessed before and after exercise training or cage confinement. Vasoreactivity of coronary resistance arteries was assessed at the end of exercise training or cage confinement. Before exercise training, ejection fraction and fractional shortening were similar in adiponectin KO and WT mice, but isovolumic contraction time was significantly lengthened in adiponectin KO mice. Exercise training increased ejection fraction (12%) and fractional shortening (20%) with no change in isovolumic contraction time in WT mice. In adiponectin KO mice, both ejection fraction (-9%) and fractional shortening (-12%) were reduced after exercise training and these decreases were coupled to a further increase in isovolumic contraction time (20%). In sedentary mice, endothelium-dependent dilation to flow was higher in arterioles from adiponectin KO mice as compared with WT mice. Exercise training enhanced dilation to flow in WT mice but decreased flow-induced dilation in adiponectin KO mice. These data suggest that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice lacking adiponectin; however, in the absence of adiponectin, cardiac and coronary microvascular adaptations to exercise training are compromised.NEW & NOTEWORTHY We report that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice in which adiponectin has been deleted; however, when mice lacking adiponectin are subjected to the physiological stress of exercise training, beneficial coronary microvascular and cardiac adaptations are compromised or absent.


Assuntos
Adiponectina/genética , Coração/fisiologia , Condicionamento Físico Animal/fisiologia , Vasodilatação/fisiologia , Adiponectina/metabolismo , Animais , Endotélio Vascular/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Microvasos/fisiologia , Miocárdio/metabolismo
14.
J Clin Invest ; 131(9)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33755597

RESUMO

Troponin C (TnC) is a critical regulator of skeletal muscle contraction; it binds Ca2+ to activate muscle contraction. Surprisingly, the gene encoding fast skeletal TnC (TNNC2) has not yet been implicated in muscle disease. Here, we report 2 families with pathogenic variants in TNNC2. Patients present with a distinct, dominantly inherited congenital muscle disease. Molecular dynamics simulations suggested that the pathomechanisms by which the variants cause muscle disease include disruption of the binding sites for Ca2+ and for troponin I. In line with these findings, physiological studies in myofibers isolated from patients' biopsies revealed a markedly reduced force response of the sarcomeres to [Ca2+]. This pathomechanism was further confirmed in experiments in which contractile dysfunction was evoked by replacing TnC in myofibers from healthy control subjects with recombinant, mutant TnC. Conversely, the contractile dysfunction of myofibers from patients was repaired by replacing endogenous, mutant TnC with recombinant, wild-type TnC. Finally, we tested the therapeutic potential of the fast skeletal muscle troponin activator tirasemtiv in patients' myofibers and showed that the contractile dysfunction was repaired. Thus, our data reveal that pathogenic variants in TNNC2 cause congenital muscle disease, and they provide therapeutic angles to repair muscle contractility.


Assuntos
Cálcio , Simulação de Dinâmica Molecular , Contração Muscular , Miotonia Congênita , Sarcômeros , Troponina C , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Humanos , Miotonia Congênita/genética , Miotonia Congênita/metabolismo , Sarcômeros/química , Sarcômeros/genética , Sarcômeros/metabolismo , Troponina C/química , Troponina C/genética , Troponina C/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753506

RESUMO

Every heartbeat relies on cyclical interactions between myosin thick and actin thin filaments orchestrated by rising and falling Ca2+ levels. Thin filaments are comprised of two actin strands, each harboring equally separated troponin complexes, which bind Ca2+ to move tropomyosin cables away from the myosin binding sites and, thus, activate systolic contraction. Recently, structures of thin filaments obtained at low (pCa ∼9) or high (pCa ∼3) Ca2+ levels revealed the transition between the Ca2+-free and Ca2+-bound states. However, in working cardiac muscle, Ca2+ levels fluctuate at intermediate values between pCa ∼6 and pCa ∼7. The structure of the thin filament at physiological Ca2+ levels is unknown. We used cryoelectron microscopy and statistical analysis to reveal the structure of the cardiac thin filament at systolic pCa = 5.8. We show that the two strands of the thin filament consist of a mixture of regulatory units, which are composed of Ca2+-free, Ca2+-bound, or mixed (e.g., Ca2+ free on one side and Ca2+ bound on the other side) troponin complexes. We traced troponin complex conformations along and across individual thin filaments to directly determine the structural composition of the cardiac native thin filament at systolic Ca2+ levels. We demonstrate that the two thin filament strands are activated stochastically with short-range cooperativity evident only on one of the two strands. Our findings suggest a mechanism by which cardiac muscle is regulated by narrow range Ca2+ fluctuations.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Cálcio/metabolismo , Miocárdio/química , Miosinas/química , Sístole , Troponina/química , Animais , Cálcio/análise , Microscopia Crioeletrônica , Conformação Proteica , Suínos
16.
J Muscle Res Cell Motil ; 42(2): 323-342, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33179204

RESUMO

Familial cardiomyopathy is an inherited disease that affects the structure and function of heart muscle and has an extreme range of phenotypes. Among the millions of affected individuals, patients with hypertrophic (HCM), dilated (DCM), or left ventricular non-compaction (LVNC) cardiomyopathy can experience morphologic changes of the heart which lead to sudden death in the most detrimental cases. TNNC1, the gene that codes for cardiac troponin C (cTnC), is a sarcomere gene associated with cardiomyopathies in which probands exhibit young age of presentation and high death, transplant or ventricular fibrillation events relative to TNNT2 and TNNI3 probands. Using GnomAD, ClinVar, UniProt and PhosphoSitePlus databases and published literature, an extensive list to date of identified genetic variants in TNNC1 and post-translational modifications (PTMs) in cTnC was compiled. Additionally, a recent cryo-EM structure of the cardiac thin filament regulatory unit was used to localize each functionally studied amino acid variant and each PTM (acetylation, glycation, s-nitrosylation, phosphorylation) in the structure of cTnC. TNNC1 has a large number of variants (> 100) relative to other genes of the same transcript size. Surprisingly, the mapped variant amino acids and PTMs are distributed throughout the cTnC structure. While many cardiomyopathy-associated variants are localized in α-helical regions of cTnC, this was not statistically significant χ2 (p = 0.72). Exploring the variants in TNNC1 and PTMs of cTnC in the contexts of cardiomyopathy association, physiological modulation and potential non-canonical roles provides insights into the normal function of cTnC along with the many facets of TNNC1 as a cardiomyopathic gene.


Assuntos
Miocárdio , Troponina C , Humanos , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional/genética , Troponina C/genética , Troponina C/metabolismo , Troponina I , Troponina T/genética
17.
J Mol Cell Cardiol ; 150: 77-90, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148509

RESUMO

BACKGROUND: The clinical outcome of hypertrophic cardiomyopathy patients is not only determined by the disease-causing mutation but influenced by a variety of disease modifiers. Here, we defined the role of the mutation location and the mutant protein dose of the troponin T mutations I79N, R94C and R278C. METHODS AND RESULTS: We determined myofilament function after troponin exchange in permeabilized single human cardiomyocytes as well as in cardiac patient samples harboring the R278C mutation. Notably, we found that a small dose of mutant protein is sufficient for the maximal effect on myofilament Ca2+-sensitivity for the I79N and R94C mutation while the mutation location determines the magnitude of this effect. While incorporation of I79N and R94C increased myofilament Ca2+-sensitivity, incorporation of R278C increased Ca2+-sensitivity at low and intermediate dose, while it decreased Ca2+-sensitivity at high dose. All three cTnT mutants showed reduced thin filament binding affinity, which coincided with a relatively low maximal exchange (50.5 ± 5.2%) of mutant troponin complex in cardiomyocytes. In accordance, 32.2 ± 4.0% mutant R278C was found in two patient samples which showed 50.0 ± 3.7% mutant mRNA. In accordance with studies that showed clinical variability in patients with the exact same mutation, we observed variability on the functional single cell level in patients with the R278C mutation. These differences in myofilament properties could not be explained by differences in the amount of mutant protein. CONCLUSIONS: Using troponin exchange in single human cardiomyocytes, we show that TNNT2 mutation-induced changes in myofilament Ca2+-sensitivity depend on mutation location, while all mutants show reduced thin filament binding affinity. The specific mutation-effect observed for R278C could not be translated to myofilament function of cardiomyocytes from patients, and is most likely explained by other (post)-translational troponin modifications. Overall, our studies illustrate that mutation location underlies variability in myofilament Ca2+-sensitivity, while only the R278C mutation shows a highly dose-dependent effect on myofilament function.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Mutação/genética , Miócitos Cardíacos/patologia , Miofibrilas/patologia , Troponina T/genética , Adolescente , Adulto , Idoso , Cálcio/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mutantes/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
J Biol Chem ; 295(47): 15913-15922, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32900850

RESUMO

Vertebrate striated muscle thin filaments are thought to be thermodynamically activated in response to an increase in Ca2+ concentration. We tested this hypothesis by measuring time intervals for gliding runs and pauses of individual skeletal muscle thin filaments in cycling myosin motility assays. A classic thermodynamic mechanism predicts that if chemical potential is constant, transitions between runs and pauses of gliding thin filaments will occur at constant rate as given by a Poisson distribution. In this scenario, rate is given by the odds of a pause, and hence, run times between pauses fit an exponential distribution that slopes negatively for all observable run times. However, we determined that relative density of observed run times fits an exponential only at low Ca2+ levels that activate filament gliding. Further titration with Ca2+, or adding excess regulatory proteins tropomyosin and troponin, shifted the relative density of short run times to fit the positive slope of a gamma distribution, which derives from waiting times between Poisson events. Events that arise during a run and prevent the chance of ending a run for a random interval of time account for the observed run time distributions, suggesting that the events originate with cycling myosin. We propose that regulatory proteins of the thin filament require the mechanical force of cycling myosin to achieve the transition state for activation. During activation, combinations of cycling myosin that contribute insufficient activation energy delay deactivation.


Assuntos
Citoesqueleto de Actina/química , Cálcio/química , Contração Muscular , Miosinas/química , Sarcômeros/química , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Miosinas/metabolismo , Coelhos , Sarcômeros/metabolismo
19.
Biochemistry ; 59(37): 3487-3497, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32840354

RESUMO

Calcium binding to troponin C (TnC) is insufficient for full activation of myosin ATPase activity by actin-tropomyosin-troponin. Previous attempts to investigate full activation utilized ATP-free myosin or chemically modified myosin to stabilize the active state of regulated actin. We utilized the Δ14-TnT and the A8V-TnC mutants to stabilize the activated state at saturating Ca2+ and to eliminate one of the inactive states at low Ca2+. The observed effects differed in solution studies and in the more ordered in vitro motility assay and in skinned cardiac muscle preparations. At saturating Ca2+, full activation with Δ14-TnT·A8V-TnC decreased the apparent KM for actin-activated ATPase activity compared to bare actin filaments. Rates of in vitro motility increased at both high and low Ca2+ with Δ14-TnT; the maximum shortening speed at high Ca2+ increased 1.8-fold. Cardiac muscle preparations exhibited increased Ca2+ sensitivity and large increases in resting force with either Δ14-TnT or Δ14-TnT·A8V-TnC. We also observed a significant increase in the maximal rate of tension redevelopment. The results of full activation with Ca2+ and Δ14-TnT·A8V-TnC confirmed and extended several earlier observations using other means of reaching full activation. Furthermore, at low Ca2+, elimination of the first inactive state led to partial activation. This work also confirms, in three distinct experimental systems, that troponin is able to stabilize the active state of actin-tropomyosin-troponin without the need for high-affinity myosin binding. The results are relevant to the reason for two inactive states and for the role of force producing myosin in regulation.


Assuntos
Actinas/metabolismo , Cálcio/metabolismo , Movimento Celular , Miocárdio/metabolismo , Tropomiosina/metabolismo , Troponina C/metabolismo , Troponina T/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Bovinos , Humanos , Miocárdio/citologia , Ligação Proteica , Troponina C/química , Troponina C/genética , Troponina T/química , Troponina T/genética
20.
J Mol Cell Cardiol ; 142: 118-125, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32278834

RESUMO

INTRODUCTION: Troponin (TNN)-encoded cardiac troponins (Tn) are critical for sensing calcium and triggering myofilament contraction. TNN variants are associated with development of cardiomyopathy; however, recent advances in genetic analysis have identified rare population variants. It is unclear how certain variants are associated with disease while others are tolerated. OBJECTIVE: To compare probands with TNNT2, TNNI3, and TNNC1 variants and utilize high-resolution variant comparison mapping of pathologic and rare population variants to identify loci associated with disease pathogenesis. METHODS: Cardiomyopathy-associated TNN variants were identified in the literature and topology mapping conducted. Clinical features were compiled and compared. Rare population variants were obtained from the gnomAD database. Signal-to-noise (S:N) normalized pathologic variant frequency against population variant frequency. Abstract review of clinical phenotypes was applied to "significant" hot spots. RESULTS: Probands were compiled (N = 70 studies, 224 probands) as were rare variants (N = 125,748 exomes; 15,708 genomes, MAF <0.001). TNNC1-positive probands demonstrated the youngest age of presentation (20.0 years; P = .016 vs TNNT2; P = .004 vs TNNI3) and the highest death, transplant, or ventricular fibrillation events (P = .093 vs TNNT2; P = .024 vs TNNI3; Kaplan Meir: P = .025). S:N analysis yielded hot spots of diagnostic significance within the tropomyosin-binding domains, α-helix 1, and the N-Terminus in TNNT2 with increased sudden cardiac death and ventricular fibrillation (P = .004). The inhibitory region and C-terminal region in TNNI3 exhibited increased restrictive cardiomyopathy (P =.008). HCM and RCM models tended to have increased calcium sensitivity and DCM decreased sensitivity (P < .001). DCM and HCM studies typically showed no differences in Hill coefficient which was decreased in RCM models (P < .001). CM models typically demonstrated no changes to Fmax (P = .239). CONCLUSION: TNNC1-positive probands had younger ages of diagnosis and poorer clinical outcomes. Mapping of TNN variants identified locations in TNNT2 and TNNI3 associated with heightened pathogenicity, RCM diagnosis, and increased risk of sudden death.


Assuntos
Alelos , Cardiomiopatias/genética , Cardiomiopatias/mortalidade , Predisposição Genética para Doença , Variação Genética , Locos de Características Quantitativas , Troponina/genética , Idade de Início , Substituição de Aminoácidos , Cardiomiopatias/diagnóstico , Mapeamento Cromossômico , Bases de Dados Genéticas , Estudos de Associação Genética , Genótipo , Humanos , Avaliação de Resultados da Assistência ao Paciente , Prognóstico , Troponina/metabolismo , Troponina I/genética , Troponina T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA