RESUMO
While the aging process is central to the pathogenesis of age-dependent diseases, it is poorly understood at the molecular level. We identified a mouse mutant with accelerated aging in the retina as well as pathologies observed in age-dependent retinal diseases, suggesting that the responsible gene regulates retinal aging, and its impairment results in age-dependent disease. We determined that a mutation in the transmembrane 135 (Tmem135) is responsible for these phenotypes. We observed localization of TMEM135 on mitochondria, and imbalance of mitochondrial fission and fusion in mutant Tmem135 as well as Tmem135 overexpressing cells, indicating that TMEM135 is involved in the regulation of mitochondrial dynamics. Additionally, mutant retina showed higher sensitivity to oxidative stress. These results suggest that the regulation of mitochondrial dynamics through TMEM135 is critical for protection from environmental stress and controlling the progression of retinal aging. Our study identified TMEM135 as a critical link between aging and age-dependent diseases.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Envelhecimento , Dinâmica Mitocondrial , Proteínas Mutantes/genética , Proteínas Nucleares/genética , Doenças Retinianas/patologia , Proteínas Adaptadoras de Transdução de Sinal/análise , Animais , Camundongos , Mitocôndrias/química , Proteínas Mutantes/análise , Proteínas Nucleares/análiseRESUMO
Influenza virus infections lead to numerous deaths and millions of hospitalizations each year. One challenge facing anti-influenza drug development is the heterogeneity of the circulating influenza viruses, which comprise several strains with variable susceptibility to antiviral drugs. For example, the wild-type (WT) influenza A viruses, such as the seasonal H1N1, tend to be sensitive to antiviral drugs, amantadine and rimantadine, while the S31N mutant viruses, such as the pandemic 2009 H1N1 (H1N1pdm09) and seasonal H3N2, are resistant to this class of drugs. Thus, drugs targeting both WT and the S31N mutant are highly desired. We report our design of a novel class of dual inhibitors along with their ion channel blockage and antiviral activities. The potency of the most active compound 11 in inhibiting WT and the S31N mutant influenza viruses is comparable with that of amantadine in inhibiting WT influenza virus. Solution NMR studies and molecular dynamics (MD) simulations of drug-M2 interactions supported our design hypothesis: namely, the dual inhibitor binds in the WT M2 channel with an aromatic group facing down toward the C-terminus, while the same drug binds in the S31N M2 channel with its aromatic group facing up toward the N-terminus. The flip-flop mode of drug binding correlates with the structure-activity relationship (SAR) and has paved the way for the next round of rational design of broad-spectrum antiviral drugs.
Assuntos
Amantadina/farmacologia , Descoberta de Drogas , Farmacorresistência Viral/genética , Vírus da Influenza A/efeitos dos fármacos , Mutação , Inibidores da Bomba de Prótons/farmacologia , Bombas de Próton/metabolismo , Animais , Cães , Farmacorresistência Viral/efeitos dos fármacos , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Simulação de Dinâmica Molecular , Porosidade , Ligação Proteica , Conformação Proteica , Inibidores da Bomba de Prótons/química , Inibidores da Bomba de Prótons/metabolismo , Bombas de Próton/química , Bombas de Próton/genética , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/metabolismo , Tiofenos/farmacologiaRESUMO
Amantadine inhibits the M2 proton channel of influenza A virus, yet most of the currently circulating strains of the virus carry mutations in the M2 protein that render the virus amantadine-resistant. While most of the research on novel amantadine analogues has revolved around the synthesis of novel adamantane derivatives, we have recently found that other polycyclic scaffolds effectively block the M2 proton channel, including amantadine-resistant mutant channels. In this work, we have synthesized and characterized a series of pyrrolidine derivatives designed as analogues of amantadine. Inhibition of the wild-type M2 channel and the A/M2-S31N, A/M2-V27A, and A/M2-L26F mutant forms of the channel were measured in Xenopus oocytes using two-electrode voltage clamp assays. Most of the novel compounds inhibited the wild-type ion channel in the low micromolar range. Of note, two of the compounds inhibited the amantadine-resistant A/M2-V27A and A/M2-L26F mutant ion channels with submicromolar and low micromolar IC50, respectively. None of the compounds was found to inhibit the S31N mutant ion channel.
Assuntos
Amantadina/análogos & derivados , Aminas/síntese química , Vírus da Influenza A/efeitos dos fármacos , Pirrolidinas/síntese química , Proteínas da Matriz Viral/antagonistas & inibidores , Aminas/farmacologia , Animais , Cães , Farmacorresistência Viral , Canais Iônicos/efeitos dos fármacos , Células Madin Darby de Rim Canino , Modelos Moleculares , Mutação , Infecções por Orthomyxoviridae/tratamento farmacológico , Técnicas de Patch-Clamp , Pirrolidinas/farmacologia , Relação Estrutura-Atividade , Proteínas da Matriz Viral/genética , XenopusRESUMO
The influenza A/M2 protein is a homotetrameric single-pass integral membrane protein encoded by the influenza A viral genome. Its transmembrane domain represents both a crucial drug target and a minimalistic model system for transmembrane proton transport and charge stabilization. Recent structural and functional studies of M2 have suggested that the proton transport mechanism involves sequential extraviral protonation and intraviral deprotonation of a highly conserved His37 side chain by the transported proton, consistent with a pH-activated proton shuttle mechanism. Multiple tautomeric forms of His can be formed, and it is not known whether they contribute to the mechanism of proton shuttling. Here we present the thermodynamic and functional characterization of an unnatural amino acid mutant at His37, where the imidazole side chain is substituted with a 4-thiazolyl group that is unable to undergo tautomerization and has a significantly lower solution pKa. The mutant construct has a similar stability to the wild-type protein at pH8 in bilayers and is virtually inactive at external pH7.4 in a semiquantitative liposome flux assay as expected from its lower sidechain pKa. However when the external buffer pH is lowered to 4.9 and 2.4, the mutant shows increasing amantadine sensitive flux of a similar magnitude to that of the wild type construct at pH7.4 and 4.9 respectively. These findings are in line with mechanistic hypotheses suggesting that proton flux through M2 is mediated by proton exchange from adjacent water molecules with the His37 sidechain, and that tautomerization is not required for proton translocation. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Assuntos
Vírus da Influenza A/química , Proteínas da Matriz Viral/fisiologia , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Mutação , Termodinâmica , Proteínas da Matriz Viral/químicaRESUMO
We have synthesized and characterized a series of compounds containing the 3-azatetracyclo[5.2.1.1(5,8).0(1,5)]undecane scaffold designed as analogues of amantadine, an inhibitor of the M2 proton channel of influenza A virus. Inhibition of the wild-type (WT) M2 channel and the amantadine-resistant A/M2-S31N and A/M2-V27A mutant ion channels were measured in Xenopus oocytes using two-electrode voltage clamp (TEV) assays. Most of the novel compounds inhibited the WT ion channel in the low micromolar range. Of note, several compounds inhibited the A/M2 V27A mutant ion channel, one of them with submicromolar IC50. None of the compounds was found to inhibit the S31N mutant ion channel. The antiviral activity of three novel dual WT and A/M2-V27A channels inhibitors was confirmed by influenza virus yield assays.
Assuntos
Compostos Aza/química , Compostos Aza/farmacologia , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Guanidinas/química , Guanidinas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Mutação , Proteínas da Matriz Viral/antagonistas & inibidores , Amantadina/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Antivirais/toxicidade , Compostos Aza/toxicidade , Hidrocarbonetos Aromáticos com Pontes/toxicidade , Cães , Desenho de Fármacos , Farmacorresistência Viral/efeitos dos fármacos , Guanidinas/toxicidade , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Pirrolidinas/química , Relação Estrutura-Atividade , Proteínas da Matriz Viral/genéticaRESUMO
Channel gating and proton conductance of the influenza A virus M2 channel result from complex pH-dependent interactions involving the pore-lining residues His37, Trp41, and Asp44. Protons diffusing from the outside of the virus protonate His37, which opens the Trp41 gate and allows one or more protons to move into the virus interior. The Trp41 gate gives rise to a strong asymmetry in the conductance, favoring rapid proton flux only when the outside is at acid pH. Here, we show that the proton currents recorded for mutants of Asp44, including D44N found in the A/FPV/Rostock/34 strain, lose this asymmetry. Moreover, NMR and MD simulations show that the mutations induce a conformational change similar to that induced by protonation of His37 at low pH, and decrease the structural stability of the hydrophobic seal associated with the Trp41 gate. Thus, Asp44 is able to determine two important properties of the M2 proton channel.
Assuntos
Vírus da Influenza A , Proteínas da Matriz Viral/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Ácido Aspártico/química , Células Cultivadas , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Oócitos/fisiologia , Técnicas de Patch-Clamp , Estabilidade Proteica , Estrutura Terciária de Proteína , Triptofano/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Xenopus laevisRESUMO
We here report on the synthesis of new series of polycyclic amines initially designed as ring-rearranged analogs of amantadine and featuring pentacyclo, hexacyclo, and octacyclo rings. A secondary amine, 3-azahexacyclo[7.6.0.0¹,5.05,¹².06,¹°.0¹¹,¹5]pentadeca-7,13-diene, 3, effectively inhibited A/M2 proton channel function, and, moreover, possessed dual activity against an A/H3N2 virus carrying a wild-type A/M2 proton channel, as well as an amantadine-resistant A/H1N1 virus. Among the polycyclic amines that did not inhibit influenza A/M2 proton channel function, several showed low-micromolar activity against tested A/H1N1 strains (in particular, the A/PR/8/34 strain), but not A/H3N2 influenza viruses. A/PR/8/34 mutants selected for resistance to these compounds possessed mutations in the viral hemagglutinin that markedly increased the hemolysis pH. Our data suggest that A/H1N1 viruses such as the A/PR/8/34 strain are particularly sensitive to a subtle increase in the endosomal pH, as caused by the polycyclic amine compounds.
Assuntos
Aminas/farmacologia , Antivirais/farmacologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Influenza Humana/virologia , Compostos Policíclicos/farmacologia , Amantadina , Aminas/química , Antivirais/síntese química , Antivirais/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Influenza Humana/tratamento farmacológico , Estrutura Molecular , Compostos Policíclicos/síntese química , Compostos Policíclicos/química , Relação Estrutura-AtividadeRESUMO
During a conventional whole-cell patch clamp experiment, diffusible cytosolic ions or molecules absent in the pipette solution can become diluted by a factor of one million or more, leading to diminished current or fluorescent signals. Existing methods to prevent or limit cytosol diffusion include reducing the diameter of the pipette's orifice, adding cytosolic extract or physiological entities to the pipette solution, and using the perforated patch clamp configuration. The first method introduces measurement error in recorded signals from increased series resistance and the latter two are cumbersome to perform. In addition, most perforated patch configurations, prevent investigators from using test compounds in the pipette solution. We present a method to overcome these limitations by minimizing cytosol dilution using a novel pipette holder. Cell-attached configuration is obtained with the pipette filled with pipette solution. Most of the pipette solution is then replaced with mineral oil so that cytosol dilution can be minimized in whole-cell configuration. To accomplish this requires a suction line and two Ag/AgCl electrodes inside the pipette. Testing our novel pipette holder with Chinese Hamster Ovarian cells, we demonstrate cytosol dilution factors between 76 and 234. For large cells with somas greater than 40 µm, cytosol dilution factors of 10 or less are achievable.
Assuntos
Citosol/química , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos , Animais , Células CHO , Cricetinae , Cricetulus , Difusão , Desenho de Equipamento , Análise de Falha de EquipamentoRESUMO
Anti-influenza drugs, amantadine and rimantadine, targeting the M2 channel from influenza A virus are no longer effective because of widespread drug resistance. S31N is the predominant and amantadine-resistant M2 mutant, present in almost all of the circulating influenza A strains as well as in the pandemic 2009 H1N1 and the highly pathogenic H5N1 flu strains. Thus, there is an urgent need to develop second-generation M2 inhibitors targeting the S31N mutant. However, the S31N mutant presents a huge challenge to drug discovery, and it has been considered undruggable for several decades. Using structural information, classical medicinal chemistry approaches, and M2-specific biological testing, we discovered benzyl-substituted amantadine derivatives with activity against both S31N and WT, among which 4-(adamantan-1-ylaminomethyl)-benzene-1,3-diol (44) is the most potent dual inhibitor. These inhibitors demonstrate that S31N is a druggable target and provide a new starting point to design novel M2 inhibitors that address the problem of drug-resistant influenza A infections.
Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Mutação , Proteínas da Matriz Viral/genética , Antivirais/química , Vírus da Influenza A Subtipo H1N1/metabolismo , Virus da Influenza A Subtipo H5N1/metabolismo , Relação Estrutura-AtividadeRESUMO
The M2 proton channel of the influenza A virus is the target of the anti-influenza drugs amantadine and rimantadine. The effectiveness of these drugs has been dramatically limited by the rapid spread of drug resistant mutations, mainly at sites S31N, V27A and L26F in the pore of the channel. Despite progress in designing inhibitors of V27A and L26F M2, there are currently no drugs targeting these mutated channels in clinical trials. Progress in developing new drugs has been hampered by the lack of a robust assay with sufficient throughput for discovery of new active chemotypes among chemical libraries and sufficient sensitivity to provide the SAR data essential for their improvement and development as drugs. In this study we adapted a yeast growth restoration assay, in which expression of the M2 channel inhibits yeast growth and exposure to an M2 channel inhibitor restores growth, into a robust and sensitive high-throughput screen for M2 channel inhibitors. A screen of over 250,000 pure chemicals and semi-purified fractions from natural extracts identified 21 active compounds comprising amantadine, rimantadine, 13 related adamantanes and 6 non-adamantanes. Of the non-adamantanes, hexamethylene amiloride and a triazine derivative represented new M2 inhibitory chemotypes that also showed antiviral activity in a plaque reduction assay. Of particular interest is the fact that the triazine derivative was not sufficiently potent for detection as an inhibitor in the traditional two electrode voltage clamp assay for M2 channel activity, but its discovery in the yeast assay led to testing of analogues of which one was as potent as amantadine.
Assuntos
Antivirais/isolamento & purificação , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/genética , Antivirais/farmacologia , Mutação de Sentido Incorreto/genética , Técnicas de Patch-Clamp , Sensibilidade e Especificidade , Leveduras/efeitos dos fármacos , Leveduras/crescimento & desenvolvimentoRESUMO
The influenza A virus M2 proton channel (A/M2) is the target of the antiviral drugs amantadine and rimantadine, whose use has been discontinued due to widespread drug resistance. Among the handful of drug-resistant mutants, S31N is found in more than 95% of the currently circulating viruses and shows greatly decreased inhibition by amantadine. The discovery of inhibitors of S31N has been hampered by the limited size, polarity, and dynamic nature of its amantadine-binding site. Nevertheless, we have discovered small-molecule drugs that inhibit S31N with potencies greater than amantadine's potency against WT M2. Drug binding locks the protein into a well-defined conformation, and the NMR structure of the complex shows the drug bound in the homotetrameric channel, threaded between the side chains of Asn31. Unrestrained molecular dynamics simulations predicted the same binding site. This S31N inhibitor, like other potent M2 inhibitors, contains a charged ammonium group. The ammonium binds as a hydrate to one of three sites aligned along the central cavity that appear to be hotspots for inhibition. These sites might stabilize hydronium-like species formed as protons diffuse through the outer channel to the proton-shuttling residue His37 near the cytoplasmic end of the channel.
Assuntos
Antivirais/química , Antivirais/farmacologia , Genes Fúngicos , Vírus da Influenza A/química , Vírus da Influenza A/genética , Mutação , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Amantadina/análogos & derivados , Amantadina/síntese química , Amantadina/química , Amantadina/farmacologia , Antivirais/síntese química , Sítios de Ligação , Desenho de Fármacos , Farmacorresistência Viral/genética , Humanos , Vírus da Influenza A/efeitos dos fármacos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Proteínas da Matriz Viral/antagonistas & inibidoresRESUMO
We used two-dimensional quantitative trait locus analysis to identify interacting genetic loci that contribute to the native airway constrictor hyperresponsiveness to methacholine that characterizes A/J mice, relative to C57BL/6J mice. We quantified airway responsiveness to intravenous methacholine boluses in eighty-eight (C57BL/6J X A/J) F2 and twenty-seven (A/J X C57BL/6J) F2 mice as well as ten A/J mice and six C57BL/6J mice; all studies were performed in male mice. Mice were genotyped at 384 SNP markers, and from these data two-QTL analyses disclosed one pair of interacting loci on chromosomes 11 and 18; the homozygous A/J genotype at each locus constituted the genetic interaction linked to the hyperresponsive A/J phenotype. Bioinformatic network analysis of potential interactions among proteins encoded by genes in the linked regions disclosed two high priority subnetworks--Myl7, Rock1, Limk2; and Npc1, Npc1l1. Evidence in the literature supports the possibility that either or both networks could contribute to the regulation of airway constrictor responsiveness. Together, these results should stimulate evaluation of the genetic contribution of these networks in the regulation of airway responsiveness in humans.
Assuntos
Hiper-Reatividade Brônquica/genética , Cromossomos de Mamíferos/genética , Predisposição Genética para Doença , Animais , Cruzamentos Genéticos , Feminino , Escore Lod , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único/genética , Mapas de Interação de Proteínas/genética , Locos de Características Quantitativas/genéticaRESUMO
The synthesis of several 6,7,8,9,10,11-hexahydro-9-methyl-5,7:9,11-dimethano-5H-benzocyclononen-7-amines is reported. Several of them display low micromolar NMDA receptor antagonist and/or trypanocidal activities. Two compounds are endowed with micromolar anti vesicular stomatitis virus activity, while only one compound shows micromolar anti-influenza activity. The anti-influenza activity of this compound does not seem to be mediated by blocking of the M2 protein.
Assuntos
Aminas/síntese química , Aminas/farmacologia , Vírus de DNA/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Aminas/química , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/farmacologiaRESUMO
We describe the use of organosilanes as inhibitors and structural probes of a membrane protein, the M2 proton channel from influenza A virus. Organosilane amine inhibitors were found to be generally as potent as their carbon analogues in targeting WT A/M2 and more potent against the drug-resistant A/M2-V27A mutant. In addition, intermolecular NOESY spectra with dimethyl-substituted organosilane amine inhibitors clearly located the drug binding site at the N-terminal lumen of the A/M2 channel close to V27.
Assuntos
Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Inibidores da Bomba de Prótons/farmacologia , Bombas de Próton/metabolismo , Silanos/farmacologia , Proteínas Virais/metabolismo , Aminas/química , Aminas/farmacologia , Antivirais/química , Sítios de Ligação , Farmacorresistência Viral , Humanos , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Modelos Moleculares , Mutação , Inibidores da Bomba de Prótons/química , Bombas de Próton/genética , Silanos/química , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genéticaRESUMO
Influenza A virus M2 (A/M2) forms a homotetrameric proton selective channel in the viral membrane. It has been the drug target of antiviral drugs such as amantadine and rimantadine. However, most of the current virulent influenza A viruses carry drug-resistant mutations alongside the drug binding site, such as S31N, V27A, and L26F, etc., each of which might be dominant in a given flu season. Among these mutations, the V27A mutation was prevalent among transmissible viruses under drug selection pressure. Until now, V27A has not been successfully targeted by small molecule inhibitors, despite years of extensive medicinal chemistry research efforts and high throughput screening. Guided by molecular dynamics (MD) simulation of drug binding and the influence of drug binding on the dynamics of A/M2 from earlier experimental studies, we designed a series of potent spirane amine inhibitors targeting not only WT, but also both A/M2-27A and L26F mutants with IC(50)s similar to that seen for amantadine's inhibition of the WT channel. The potencies of these inhibitors were further demonstrated in experimental binding and plaque reduction assays. These results demonstrate the power of MD simulations to probe the mechanism of drug binding as well as the ability to guide design of inhibitors of targets that had previously appeared to be undruggable.
Assuntos
Antivirais/química , Antivirais/farmacologia , Farmacorresistência Viral , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/genética , Desenho de Fármacos , Humanos , Vírus da Influenza A/genética , Simulação de Dinâmica Molecular , Ensaio de Placa ViralRESUMO
Inhibitors targeting the influenza A virus M2 (A/M2) proton channel, have lost their effectiveness due to widespread resistance. As a first step in the development of new inhibitors that address this problem, we have screened several focused collections of small molecules using two electrode voltage patch clamp assays (TEVC) on Xenopus laevis Oocyte. Diverse head groups and scaffolds of A/M2 inhibitors have been explored. It has been found that not only amine, but also hydroxyl, aminooxyl, guanidine and amidine compounds are active against the A/M2 proton channel. Moreover, the channel is able to accommodate a wide range of structural variation in the apolar scaffold. This study offers information to guide the next generation of A/M2 proton channel inhibitor design.
RESUMO
Amantadine inhibits the M2 proton channel of influenza A virus, yet its clinical use has been limited by the rapid emergence of amantadine-resistant virus strains. We have synthesized and characterized a series of polycyclic compounds designed as ring-contracted or ring-expanded analogues of amantadine. Inhibition of the wild-type (wt) M2 channel and the A/M2-S31N and A/M2-V27A mutant ion channels were measured in Xenopus oocytes using two-electrode voltage clamp (TEV) assays. Several bisnoradamantane and noradamantane derivatives inhibited the wt ion channel. The compounds bind to a primary site delineated by Val27, Ala30, and Ser31, though ring expansion restricts the positioning in the binding site. Only the smallest analogue 8 was found to inhibit the S31N mutant ion channel. The structure-activity relationship obtained by TEV assay was confirmed by plaque reduction assays with A/H3N2 influenza virus carrying wt M2 protein.
Assuntos
Proteínas da Matriz Viral/antagonistas & inibidores , Amantadina/química , Amantadina/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Cães , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Técnicas de Patch-Clamp , Espectrofotometria Infravermelho , Relação Estrutura-Atividade , Proteínas da Matriz Viral/química , Ensaio de Placa Viral , XenopusRESUMO
PURPOSE: Detection of light in the eye contributes both to spatial awareness (form vision) and to responses that acclimate an animal to gross changes in light (irradiance detection). This dual role means that eye disease that disrupts form vision can also adversely affect physiology and behavioral state. The purpose of this study was to investigate how inner retinal circuitry mediating rod-cone photoreceptor input contributes to functionally distinct irradiance responses and whether that might account for phenotypic diversity in retinal disease. METHODS: The sensitivity of the pupillary light reflex and negative masking (activity suppression by light) was measured in wild-type mice with intact inner retinal circuitry, Nob4 mice that lack ON-bipolar cell function, and rd1 mice that lack rods and cones and, therefore, have no input to ON or OFF bipolar cells. RESULTS: An expected increase in sensitivity to negative masking with loss of photoreceptor input in rd1 was duplicated in Nob4 mice. In contrast, sensitivity of the pupillary light reflex was more severely reduced in rd1 than in Nob4 mice. CONCLUSIONS: Absence of ON-bipolar cell-mediated rod-cone input can fully explain the phenotype of outer retina degeneration for negative masking but not for the pupillary light reflex. Therefore, inner retinal pathways mediating rod-cone input are different for negative masking and the pupillary light reflex.
Assuntos
Comportamento Animal , Reflexo Pupilar/fisiologia , Células Bipolares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Degeneração Retiniana/fisiopatologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Visão Ocular/fisiologia , Animais , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Atividade Motora/fisiologia , Reflexo Pupilar/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Ganglionares da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Percepção VisualRESUMO
The influenza A/M2 protein exhibits inwardly rectifying, pH-activated proton transport that saturates at low pH. A comparison of high-resolution structures of the transmembrane domain at high and low pH suggests that pH-dependent conformational changes may facilitate proton conduction by alternately changing the accessibility of the N-terminal and C-terminal regions of the channel as a proton transits through the transmembrane domain. Here, we show that M2 functionally reconstituted in liposomes populates at least three different conformational states over a physiologically relevant pH range, with transition midpoints that are consistent with previously reported His37 pK(a) values. We then develop and test two similar, quantitative mechanistic models of proton transport, where protonation shifts the equilibrium between structural states having different proton affinities and solvent accessibilities. The models account well for a collection of experimental data sets over a wide range of pH values and voltages and require only a small number of adjustable parameters to accurately describe the data. While the kinetic models do not require any specific conformation for the protein, they nevertheless are consistent with a large body of structural information based on high-resolution nuclear magnetic resonance and crystallographic structures, optical spectroscopy, and molecular dynamics calculations.
Assuntos
Conformação Proteica/efeitos dos fármacos , Prótons , Proteínas da Matriz Viral/química , Animais , Concentração de Íons de Hidrogênio , Vírus da Influenza A/metabolismo , Canais Iônicos/fisiologia , Cinética , Lipossomos , Oócitos/metabolismo , XenopusRESUMO
The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2(+) and 3(+) with a pK(a) near 6. A 1.65 A resolution X-ray structure of the transmembrane protein (residues 25-46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.