Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(6): 827-849, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758610

RESUMO

The attrition rate of drugs in clinical trials is generally quite high, with estimates suggesting that approximately 90% of drugs fail to make it through the process. The identification of unexpected toxicity issues during preclinical stages is a significant factor contributing to this high rate of failure. These issues can have a major impact on the success of a drug and must be carefully considered throughout the development process. These late-stage rejections or withdrawals of drug candidates significantly increase the costs associated with drug development, particularly when toxicity is detected during clinical trials or after market release. Understanding drug-biological target interactions is essential for evaluating compound toxicity and safety, as well as predicting therapeutic effects and potential off-target effects that could lead to toxicity. This will enable scientists to predict and assess the safety profiles of drug candidates more accurately. Evaluation of toxicity and safety is a critical aspect of drug development, and biomolecules, particularly proteins, play vital roles in complex biological networks and often serve as targets for various chemicals. Therefore, a better understanding of these interactions is crucial for the advancement of drug development. The development of computational methods for evaluating protein-ligand interactions and predicting toxicity is emerging as a promising approach that adheres to the 3Rs principles (replace, reduce, and refine) and has garnered significant attention in recent years. In this review, we present a thorough examination of the latest breakthroughs in drug toxicity prediction, highlighting the significance of drug-target binding affinity in anticipating and mitigating possible adverse effects. In doing so, we aim to contribute to the development of more effective and secure drugs.


Assuntos
Desenvolvimento de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Animais
2.
Ageing Res Rev ; 67: 101309, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33626408

RESUMO

Mitochondria are highly dynamic organelles capable of adapting their network, morphology, and function, playing a role in oxidative phosphorylation and many cellular processes in most cell types. Skeletal muscle is a very plastic tissue, subjected to many morphological changes following diverse stimuli, such as during myogenic differentiation and regenerative myogenesis. For some time now, mitochondria have been reported to be involved in myogenesis by promoting a bioenergetic remodeling and assisting myoblasts in surviving the process. However, not much is known about the interplay between mitochondrial quality control and myogenic differentiation. Sestrin2 (SESN2) is a well described regulator of autophagy and antioxidant responses and has been gaining attention due to its role in aging-associated pathologies and redox signaling promoted by reactive oxygen species (ROS) in many tissues. Current evidence involving SESN2-associated pathways suggest that it can act as a potential regulator of mitochondrial quality control following induction by ROS under stress conditions, such as during myogenesis. Yet, there are no studies directly assessing SESN2 involvement in myogenic differentiation. This review provides novel insights pertaining the involvement of SESN2 in myogenic differentiation by analyzing the interactions between ROS and mitochondrial remodeling.


Assuntos
Mitocôndrias , Desenvolvimento Muscular , Diferenciação Celular , Mioblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA