Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 1): 129399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219930

RESUMO

Lignins represent a high interest in cosmetics as promising multifunctional ingredients. Despite this, uncovering the sensory profile of lignin-based emulsions has remained an unexplored frontier. This study aims to bridge this gap by employing expert sensory evaluation and instrumental characterization to assess the sensory attributes of lignin-based emulsions. A comparative analysis with commercial tinted products and discrimination among lignin derivatives were integral components of the research. Results underscored the distinctive sensory properties of lignin emulsions, exhibiting significantly higher "Integrity of shape" (7.0 ± 0.1) compared to commercial products (4.8 ± 0.1). Additionally, lignin emulsions displayed longer play-time until skin absorption (4.3 ± 0.1), contrasting with the quicker absorption of commercial products (2.7 ± 0.4) and their shorter play-time. Depending on application requirements, lignin derivatives offer formulators a versatile sensory toolbox. Discrimination of lignin emulsions on certain texture properties was achieved using various instrumental tools. Despite the complex formulation of commercial products compared to lignin emulsions, similar texture properties were observed, showcasing lignins' potential to replace multiple ingredients in tinted cosmetics. Beyond their established antioxidant, anti-UV, anti-bacterial, and emulsifying properties, this study reveals additional advantageous sensory properties of lignins, positioning them as promising plant-based sensory ingredients in sustainable cosmetic applications.


Assuntos
Fosfatos de Cálcio , Cosméticos , Lignina , Antioxidantes , Fenômenos Químicos , Emulsões
2.
Front Chem ; 11: 1239479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547909

RESUMO

In this article, we describe a proof of concept of the potential use of a biocatalytic process for the functionalization of technical soda lignins from wheat straw through the selective acylation of primary hydroxy groups of lignin oligomers by acetate or hexanoate, thus preserving their free, unreacted phenols. The selectivity and efficiency of the method, although they depend on the structural complexity of the starting material, have been proven on model compounds. Applied to technical lignins, the acylation yield is only moderate, due to structural and chemical features induced by the industrial mode of preparation of the lignins rather than to the lack of efficiency of the method. However, most of the physicochemical properties of the lignins, including their antioxidant potential, are preserved, advocating the potential use of these modified lignins for industrial applications.

3.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375426

RESUMO

Here, we report work on developing an enzymatic process to improve the functionalities of industrial lignin. A kraft lignin sample prepared from marine pine was treated with the high-redox-potential laccase from the basidiomycete fungus Pycnoporus cinnabarinus at three different concentrations and pH conditions, and with and without the chemical mediator 1-hydroxybenzotriazole (HBT). Laccase activity was tested in the presence and absence of kraft lignin. The optimum pH of PciLac was initially 4.0 in the presence and absence of lignin, but at incubation times over 6 h, higher activities were found at pH 4.5 in the presence of lignin. Structural changes in lignin were investigated by Fourier-transform infrared spectroscopy (FTIR) with differential scanning calorimetry (DSC), and solvent-extractable fractions were analyzed using high-performance size-exclusion chromatography (HPSEC) and gas chromatography-mass spectrometry (GC-MS). The FTIR spectral data were analyzed with two successive multivariate series using principal component analysis (PCA) and ANOVA statistical analysis to identify the best conditions for the largest range of chemical modifications. DSC combined with modulated DSC (MDSC) revealed that the greatest effect on glass transition temperature (Tg) was obtained at 130 U g cm-1 and pH 4.5, with the laccase alone or combined with HBT. HPSEC data suggested that the laccase treatments led to concomitant phenomena of oligomerization and depolymerization, and GC-MS revealed that the reactivity of the extractable phenolic monomers depended on the conditions tested. This study demonstrates that P. cinnabarinus laccase can be used to modify marine pine kraft lignin, and that the set of analytical methods implemented here provides a valuable tool for screening enzymatic treatment conditions.


Assuntos
Lacase , Polyporaceae , Lacase/química , Lignina/química
4.
J Fungi (Basel) ; 7(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435491

RESUMO

Technical lignins produced as a by-product in biorefinery processes represent a potential source of renewable carbon. In consideration of the possibilities of the industrial transformation of this substrate into various valuable bio-based molecules, the biological deconstruction of a technical soda lignin by filamentous fungi was investigated. The ability of three basidiomycetes (Polyporus brumalis, Pycnoporus sanguineus and Leiotrametes menziesii) to modify this material, the resultant structural and chemical changes, and the secreted proteins during growth on this substrate were investigated. The three fungi could grow on the technical lignin alone, and the growth rate increased when the media were supplemented with glucose or maltose. The proteomic analysis of the culture supernatants after three days of growth revealed the secretion of numerous Carbohydrate-Active Enzymes (CAZymes). The secretomic profiles varied widely between the strains and the presence of technical lignin alone triggered the early secretion of many lignin-acting oxidoreductases. The secretomes were notably rich in glycoside hydrolases and H2O2-producing auxiliary activity enzymes with copper radical oxidases being induced on lignin for all strains. The lignin treatment by fungi modified both the soluble and insoluble lignin fractions. A significant decrease in the amount of soluble higher molar mass compounds was observed in the case of P. sanguineus. This strain was also responsible for the modification of the lower molar mass compounds of the lignin insoluble fraction and a 40% decrease in the thioacidolysis yield. The similarity in the activities of P. sanguineus and P. brumalis in modifying the functional groups of the technical lignin were observed, the results suggest that the lignin has undergone structural changes, or at least changes in its composition, and pave the route for the utilization of filamentous fungi to functionalize technical lignins and produce the enzymes of interest for biorefinery applications.

5.
ChemSusChem ; 12(21): 4799-4809, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31436856

RESUMO

A grass soda technical lignin (PB1000) underwent a process combining solvent fractionation and treatment with an ionic liquid (IL), and a comprehensive investigation of the structural modifications was performed by using high-performance size-exclusion chromatography, 31 P NMR spectroscopy, thioacidolysis, and GC-MS. Three fractions with distinct reactivity were recovered from successive ethyl acetate (EA), butanone, and methanol extractions. In parallel, a fraction deprived of EA extractives was obtained. The samples were treated with methyl imidazolium bromide ([HMIM]Br) by using either conventional heating or microwave irradiation. The treatment allowed us to solubilize 28 % of the EA-insoluble fraction and yielded additional free phenols in all the fractions, as a consequence of depolymerization and demethylation. The gain of the combined process in terms of antioxidant properties was demonstrated through 2,2-diphenyl-1-picrylhydrazyl (DPPH. ) radical-scavenging tests. Integrating further IL safety-related data and environmental considerations, this study paves the way for the sustainable production of phenolic oligomers competing with commercial antioxidants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA