Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Microbiol Biol Educ ; : e0019823, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690897

RESUMO

Fungi mostly reproduce through spores that are adapted for airborne dispersal; hence, fungal spores (and fungi) are found virtually everywhere. Fungi can be "friends or foes." Our friends include fungi used in the food and biotech industries, fungi that contribute to the cycling of carbon and nutrients, and those involved in the decontamination of polluted soils and/or water, to mention just a few examples. Many species, however, are foes-they are detrimental to plants, animals, and/or humans. Annually, >1.5 million people die due to invasive fungal infections. With the aim of enhancing microbiology literacy and the understanding of microbial concepts, we set up a project for the collection of airborne spores (the principal agent through which human airways are exposed to fungi). Students from five high schools in the Oeiras municipality partnered with us as citizen scientists; they carried out sampling by collecting fungal spores on adhesive stickers. The fungal spores collected by the students were subsequently processed in the schools and our research laboratory. Results obtained by the students themselves revealed a large variety of fungal species capable of growing in a rich medium at 30°C. In the research laboratory, using selective isolation conditions, 40 thermotolerant fungi were isolated, 32 of which were taxonomically identified as aspergilla, mostly from within the Aspergillus fumigatus taxa, yet exhibiting high genetic heterogeneity. The protocols and results were presented to the students, who were made aware of the local dispersal of airborne fungal spores, including some from potentially pathogenic fungi. Through carrying out scientific activities, the students developed both the interest and the self-confidence needed to implement future environmental investigations.

2.
Nat Commun ; 14(1): 5579, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696824

RESUMO

Immunological memory is critical for immune protection, particularly at epithelial sites, which are under constant risk of pathogen invasions. To counter invading pathogens, CD8+ memory T cells develop at the location of infection: tissue-resident memory T cells (TRM). CD8+ T-cell responses are associated with type-1 infections and type-1 regulatory T cells (TREG) are important for CD8+ T-cell development, however, if CD8+ TRM cells develop under other infection types and require immune type-specific TREG cells is unknown. We used three distinct lung infection models, to show that type-2 helminth infection does not establish CD8+ TRM cells. Intracellular (type-1) and extracellular (type-3) infections do and rely on the recruitment of response type-matching TREG population contributing transforming growth factor-ß. Nevertheless, type-1 TREG cells remain the most important population for TRM cell development. Once established, TRM cells maintain their immune type profile. These results may have implications in the development of vaccines inducing CD8+ TRM cells.


Assuntos
Células T de Memória , Linfócitos T Reguladores , Linfócitos T CD4-Positivos , Diferenciação Celular , Linfócitos T CD8-Positivos
3.
Microbiol Spectr ; 11(4): e0066723, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37284774

RESUMO

Organic pollutants are omnipresent and can penetrate all environmental niches. We evaluated the hypothesis that short-term (acute) exposure to aromatic hydrocarbon pollutants could increase the potential for fungal virulence. Specifically, we analyzed whether pentachlorophenol and triclosan pollution results in the production of airborne fungal spores with greater virulence than those derived from an unpolluted (Control) condition. Each pollutant altered the composition of the community of airborne spores compared to the control, favoring an increase in strains with in vivo infection capacity (the wax moth Galleria mellonella was used as an infection model). Fungi subsisting inside larvae at 72 h postinjection with airborne spore inocula collected in polluted and unpolluted conditions exhibited comparable diversity (mainly within Aspergillus fumigatus). Several virulent Aspergillus strains were isolated from larvae infected with the airborne spores produced in a polluted environment. Meanwhile, strains isolated from larvae injected with spores from the control, including one A. fumigatus strain, showed no virulence. Potential pathogenicity increased when two Aspergillus virulent strains were assembled, suggesting the existence of synergisms that impact pathogenicity. None of the observed taxonomic or functional traits could separate the virulent from the avirulent strains. Our study emphasizes pollution stress as a possible driver of phenotypic adaptations that increase Aspergillus pathogenicity, as well as the need to better understand the interplay between pollution and fungal virulence. IMPORTANCE Fungi colonizing soil and organic pollutants often meet. The consequences of this encounter constitute an outstanding question. We scrutinized the potential for virulence of airborne fungal spores produced under unpolluted and polluted scenarios. The airborne spores showed increased diversity of strains with higher infection capacity in Galleria mellonella whenever pollution is present. Inside the larvae injected with either airborne spore community, the surviving fungi demonstrated a similar diversity, mainly within Aspergillus fumigatus. However, the isolated Aspergillus strains greatly differ since virulence was only observed for those associated with a polluted environment. The interplay between pollution and fungal virulence still hides many unresolved questions, but the encounter is costly: pollution stress promotes phenotypic adaptations that may increase Aspergillus pathogenicity.


Assuntos
Aspergilose , Poluentes Ambientais , Mariposas , Animais , Esporos Fúngicos , Aspergilose/microbiologia , Solo , Aspergillus fumigatus , Aspergillus , Mariposas/microbiologia , Larva/microbiologia
5.
Front Microbiol ; 10: 864, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105664

RESUMO

Understanding stress responses and signaling pathways in fungi became a fundamental need for the discovery of new specific antifungal targets for fighting emerging life-threatening pathogens and drug resistance. Ionic liquids constitute a unique class of chemicals, which structural diversity and tunable physical and chemical properties can provide a great diversity of stimuli. In this study, we propose the use of ionic liquids as tools to unravel signaling of stress responses in the filamentous fungus Aspergillus nidulans. We assessed how three ionic liquids with distinct effects over the cell wall and plasma membrane affect the biosynthesis of sphingolipids and accumulation of free sphingoid bases in this fungus. The stress imposed by each ionic liquid triggered the sphingolipid biosynthetic pathway and led to distinct profiles of sphingoid bases accumulation. Dodecyltributylphosphonium chloride and 1-decyl-3-methylimidazolium chloride induced the accumulation of sphingosine and of a yet unknown sphingoid base, respectively, while cholinium decanoate did not seem to accumulate any of these intermediates. This study brings further light to the roles of sphingoid bases in A. nidulans. In particular, sphingosine as a possible response mediator to cell wall damage induced by dodecyltributylphosphonium chloride, and involvement of an unknown sphingoid base in the response to plasma membrane permeabilization caused by 1-decyl-3-methylimidazolium chloride. In addition, we completed the genetic assignment of the glucosylceramide pathway in A. nidulans through the identification of the sphingolipid Δ4-desaturase gene (AN4405). The knowledge established reinforces the idea of targeting sphingolipids biosynthesis in the search of improved antifungal compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA