RESUMO
BACKGROUND: The role of tyrosine kinase inhibitors (TKIs) in early-stage and metastatic oncogene-driven non-small cell lung cancer (NSCLC) is established, but it remains unknown how best to integrate TKIs with concurrent chemoradiotherapy (cCRT) in locally advanced disease. The phase 2 ASCENT trial assessed the efficacy and safety of afatinib and cCRT with or without surgery in locally advanced epidermal growth factor receptor (EGFR)-mutant NSCLC. PATIENTS AND METHODS: Adults ≥18 years with histologically confirmed stage III (AJCC 7th edition) NSCLC with activating EGFR mutations were enrolled at Mass General and Dana-Farber/Brigham Cancer Centers, Boston, Massachusetts. Patients received induction afatinib 40 mg daily for 2 months, then cisplatin 75 mg/m2 and pemetrexed 500 mg/m2 IV every 3 weeks during RT (definitive or neoadjuvant dosing). Patients with resectable disease underwent surgery. All patients were offered consolidation afatinib for 2 years. The primary endpoint was the objective response rate (ORR) to induction TKI. Secondary endpoints were safety, conversion to operability, progression-free survival (PFS), and overall survival (OS). Analyses were performed on the intention-to-treat population. RESULTS: Nineteen patients (median age 56 years; 74% female) were enrolled. ORR to induction afatinib was 63%. Seventeen patients received cCRT; 2/9 previously unresectable became resectable. Ten underwent surgery; 6 had a major or complete pathological response. Thirteen received consolidation afatinib. With a median follow-up of 5.0 years, median PFS and OS were 2.6 (95% CI, 1.4-3.1) and 5.8 years (2.9-NR), respectively. Sixteen recurred or died; 6 recurrences were isolated to CNS. The median time to progression after stopping consolidation TKI was 2.9 months (95% CI, 1.1-7.2). Four developed grade 2 pneumonitis. There were no treatment-related deaths. CONCLUSION: We explored the efficacy of combining TKI with cCRT in oncogene-driven NSCLC. Induction TKI did not compromise subsequent receipt of multimodality therapy. PFS was promising, but the prevalence of CNS-only recurrences and rapid progression after TKI discontinuation speak to unmet needs in measuring and eradicating micrometastatic disease.
Assuntos
Afatinib , Carcinoma Pulmonar de Células não Pequenas , Quimiorradioterapia , Receptores ErbB , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Feminino , Masculino , Afatinib/uso terapêutico , Afatinib/farmacologia , Pessoa de Meia-Idade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/radioterapia , Idoso , Receptores ErbB/genética , Quimiorradioterapia/métodos , Mutação , Adulto , Estadiamento de Neoplasias , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologiaRESUMO
Osimertinib is a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR) that is used for first-line therapy in EGFR mutated non-small cell lung cancer (NSCLC) based on the results of the randomized FLAURA trial (ClinicalTrials.gov number NCT02296125). We performed a retrospective analysis of baseline characteristics and clinical outcomes in 56 real-world patients treated with osimertinib. In total, 45% of patients were determined to be FLAURA-eligible and 55% were FLAURA-ineligible based on the published inclusion/exclusion criteria of the aforementioned trial. For clinical outcomes, the median osimertinib time to treatment discontinuation (TTD) for all patients was 16.9 months (95% CI: 12.6-35.1), whereas the median TTD was 31.1 months (95% CI: 14.9-not reached) in the FLAURA-eligible cohort and the median TTD was 12.2 months (95% CI: 8.1-34.6 months) in the FLAURA-ineligible cohort. Re-biopsy at acquired resistance disclosed both on- and off-target mechanisms. The most common therapies following osimertinib included local therapies followed by post-progression osimertinib, platinum-doublet chemotherapy with or without osimertinib, and osimertinib combinatory targeted therapies. The median overall survival for all patients was 32.0 months (95% CI: 15.7-not reached), the median survival was not reached for the FLAURA-eligible cohort, and it was 16.5 months for the FLAURA-ineligible cohort. Our data support the use of osimertinib in real-word settings and highlight the need for designing registration trials that are more inclusive of patient/disease characteristics seen in routine clinical practice. It is yet to be determined if the use of evolving first-line EGFR inhibitor combination strategies (either platinum-doublet chemotherapy plus osimertinib or amivantamab plus lazertinib) will similarly translate from clinical trials to real-word settings.
RESUMO
The Oncology Grand Rounds series is designed to place original reports published in the Journal into clinical context. A case presentation is followed by a description of diagnostic and management challenges, a review of the relevant literature, and a summary of the authors' suggested management approaches. The goal of this series is to help readers better understand how to apply the results of key studies, including those published in Journal of Clinical Oncology, to patients seen in their own clinical practice.Patients with epidermal growth factor receptor (EGFR)-mutated advanced non-small-cell lung cancer represent a distinct subgroup of individuals who can experience initially tolerable and durable effects with first-line EGFR-directed tyrosine kinase inhibitors. Unfortunately, acquired treatment resistance and cancer progression within the CNS are inevitable during the disease course and present a challenging transition in the care continuum. Next-line therapies generally require combinations of drugs and afford nuanced differences in clinical outcomes relative to the treatment experience, toxicity profile, and quality of life. Therapeutic stratification and modulation thus require further personalization and partnership with patients to identify key clinical, molecular, and human-specific factors to best guide optimal care.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Qualidade de Vida , Receptores ErbB/genética , OncologiaRESUMO
OBJECTIVES: Neoadjuvant therapy prior to surgical resection for locally advanced lung cancer has evolved to incorporate systemic cytotoxic chemotherapy +/- immunotherapy +/- radiotherapy. The role of neoadjuvant precision therapies remains understudied. MATERIALS AND METHODS: We report cases with major and complete pathologic responses to off-label neoadjuvant alectinib. RESULTS: A case with stage IIIA (cT1b cN2 cM0) EML4-ALK variant 3a/b lung adenocarcinoma received 6 weeks of alectinib followed by R0 left upper lobectomy with complete pathological response (ypT0 ypN0). Another case with stage IIIA (cT3 cN2 cM0) EML4-ALK variant 2 received 12 weeks of alectinib followed by R0 right middle lobectomy with a major pathologic response (ypT1a ypN0) but systemic recurrence 12 months post-operatively. CONCLUSION: Ongoing clinical trials are evaluating the role of both neoadjuvant and adjuvant ALK-directed therapy. Our cases support the completion of ongoing trials (ALINA: NCT03456076 and ALNEO: NCT05015010), and highlight the ability of second generation ALK inhibitors to induce major and complete pathologic responses in the neoadjuvant setting plus the likely role of long-term adjuvant kinase inhibitor therapy to prevent radiographic/clinical recurrence.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carbazóis , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ensaios Clínicos como Assunto , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Terapia Neoadjuvante , Piperidinas , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases/uso terapêuticoRESUMO
INTRODUCTION: Patients with EGFR-mutant lung cancer who have had disease progression on osimertinib commonly receive platinum doublet chemotherapy, but whether adding immunotherapy or bevacizumab provides additional benefit is unknown. MATERIALS AND METHODS: This was a retrospective analysis at 2 university-affiliated institutions. Patients with EGFR-mutant lung cancer who had progression on osimertinib and received next-line therapy with platinum doublet chemotherapy (chemo), platinum doublet chemotherapy plus immunotherapy (chemo-IO), or platinum doublet chemotherapy plus bevacizumab (chemo-bev), were identified; patients who continued osimertinib with these regimens were included. Efficacy outcomes including duration on treatment (DOT) and overall survival (OS) from the start of chemotherapy were assessed. Associations of treatment regimen with outcomes were evaluated using adjusted Cox regression models, using pairwise comparisons between groups. RESULTS: 104 patients were included: 57 received chemo, 12 received chemo-IO, and 35 received chemo-bev. In adjusted models, patients who received chemo-IO had worse OS than did those who received chemo (hazard ratio (HR) 2.66, 95% CI 1.25-5.65; P= .011) or those who received chemo-bev (HR 2.37, 95% CI 1.09-5.65; P= .030). A statistically significant difference in OS could not be detected in patients who received chemo-bev versus those who received chemo (HR 1.50, 95% CI 0.84-2.69; P= .17). CONCLUSION: In this retrospective study, giving immunotherapy with platinum doublet chemotherapy after progression on osimertinib was associated with a worse OS compared with platinum doublet chemotherapy alone. Platinum doublet chemotherapy without immunotherapy (with consideration of continuation of osimertinib, in selected cases) is a reasonable choice in this setting, while we await results of clinical trials examining optimal next-line chemotherapy-based regimens in EGFR-mutant lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Acrilamidas , Compostos de Anilina , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Platina/uso terapêutico , Estudos RetrospectivosRESUMO
BACKGROUND: Early reports suggested increased mortality from COVID-19 in patients with cancer but lacked rigorous comparisons to patients without cancer. We investigated whether a current cancer diagnosis or cancer history is an independent risk factor for death in hospitalized patients with COVID-19. PATIENTS AND METHODS: We identified patients with a history of cancer admitted to two large hospitals between March 13, 2020, and May 10, 2020, with laboratory-confirmed COVID-19 and matched them 1:2 to patients without a history of cancer. RESULTS: Men made up 56.2% of the population, with a median age of 69 years (range, 30-96). The median time since cancer diagnosis was 35.6 months (range, 0.39-435); 80% had a solid tumor, and 20% had a hematologic malignancy. Among patients with cancer, 27.8% died or entered hospice versus 25.6% among patients without cancer. In multivariable analyses, the odds of death/hospice were similar (odds ratio [OR], 1.09; 95% confidence interval [CI], 0.65-1.82). The odds of intubation (OR, 0.46; 95% CI, 0.28-0.78), shock (OR, 0.54; 95% CI, 0.32-0.91), and intensive care unit admission (OR, 0.51; 95% CI, 0.32-0.81) were lower for patients with a history of cancer versus controls. Patients with active cancer or who had received cancer-directed therapy in the past 6 months had similar odds of death/hospice compared with cancer survivors (univariable OR, 1.31; 95% CI, 0.66-2.60; multivariable OR, 1.47; 95% CI, 0.69-3.16). CONCLUSION: Patients with a history of cancer hospitalized for COVID-19 had similar mortality to matched hospitalized patients with COVID-19 without cancer, and a lower risk of complications. In this population, patients with active cancer or recent cancer treatment had a similar risk for adverse outcomes compared with survivors of cancer. IMPLICATIONS FOR PRACTICE: This study investigated whether a current cancer diagnosis or cancer history is an independent risk factor for death or hospice admission in hospitalized patients with COVID-19. Active cancer, systemic cancer therapy, and a cancer history are not independent risk factors for death from COVID-19 among hospitalized patients, and hospitalized patients without cancer are more likely to have severe COVID-19. These findings provide reassurance to survivors of cancer and patients with cancer as to their relative risk of severe COVID-19, may encourage oncologists to provide standard anticancer therapy in patients at risk of COVID-19, and guide triage in future waves of infection.
Assuntos
COVID-19 , Neoplasias , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Hospitalização , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Neoplasias/complicações , Neoplasias/epidemiologia , Fatores de Risco , SARS-CoV-2RESUMO
BACKGROUND: For cancer patients, coronavirus disease 19 (COVID-19) infection can lead to delays in cancer therapy both due to the infection itself and due to the need to minimize exposure to other patients and to staff. Clearance guidelines have been proposed, but expected time to clearance has not been established. METHODS: We identified all patients at a tertiary care hospital cancer center between 25 March 2020 and 6 June 2020 with a positive nasopharyngeal reverse transcriptase polymerase chain reaction (RT-PCR) test for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cancer-related visit within 3 years, and at least one follow-up assay. We determined the time to clearance using American Society of Clinical Oncology (ASCO), the UK National Institute for Health and Care Excellence (UK-NICE), and Centers for Disease Control and Prevention (CDC) criteria. A matched non-cancer comparison cohort was also identified. RESULTS: Thirty-two cancer patients were identified. Nineteen were cleared by ASCO criteria, with estimated median time to clearance of 50 days. Fourteen patients resumed chemotherapy prior to clearance. Using UK-NICE criteria, median time to clearance would have been 31 days, and using CDC criteria, it would have been 13 days. The matched non-cancer cohort had similar clearance time, but with less frequent testing. CONCLUSION: SARS-CoV-2 clearance times differ substantially depending on the criteria used and may be prolonged in cancer patients. This could lead to a delay in cancer care, increased use of clearance testing, and extension of infection control precautions.
Assuntos
COVID-19/virologia , Controle de Infecções/métodos , Neoplasias/virologia , Quarentena/métodos , SARS-CoV-2/isolamento & purificação , Idoso , COVID-19/epidemiologia , Comorbidade , Feminino , Humanos , Masculino , Neoplasias/epidemiologia , Fatores de Risco , Fatores de TempoRESUMO
INTRODUCTION: Lung cancer is associated with severe coronavirus disease 2019 (COVID-19) infections. Symptom overlap between COVID-19 and lung cancer may complicate diagnostic evaluation. We aimed to investigate the incidence, symptoms, differential diagnosis, and outcomes of COVID-19 in patients with lung cancer. METHODS: To determine an at-risk population for COVID-19, we retrospectively identified patients with lung cancer receiving longitudinal care within a single institution in the 12 months (April 1, 2019 to March 31, 2020) immediately preceding the COVID-19 pandemic, including an "active therapy population" treated within the last 60 days of this period. Among patients subsequently referred for COVID-19 testing, we compared symptoms, laboratory values, radiographic findings, and outcomes of positive versus negative patients. RESULTS: Between April 1, 2019 and March 31, 2020, a total of 696 patients received longitudinal care, including 406 (58%) in the active therapy population. Among 55 patients referred for COVID-19 testing, 24 (44%) were positive for COVID-19, representing a cumulative incidence of 3.4% (longitudinal population) and 1.5% (active therapy population). Compared with patients who were COVID-19 negative, those who were COVID-19 positive were more likely to have a supplemental oxygen requirement (11% versus 54%, p = 0.005) and to have typical COVID-19 pneumonia imaging findings (5 versus 56%, p = 0.001). Otherwise, there were no marked differences in presenting symptoms. Among patients who were COVID-19 negative, alternative etiologies included treatment-related toxicity (26%), atypical pneumonia (22%), and disease progression (22%). A total of 16 patients positive for COVID-19 (67%) required hospitalization, and seven (29%) died from COVID-related complications. CONCLUSIONS: COVID-19 was infrequent in this lung cancer population, but these patients experienced high rates of morbidity and mortality. Oncologists should maintain a low threshold for COVID-19 testing in patients with lung cancer presenting with acute symptoms.
RESUMO
QUESTION: What is the median time to clearance of SARS-CoV-2 among cancer patients according to currently used criteria? FINDINGS: In this single-institution retrospective cohort study, the median time to SARS-CoV-2 clearance was 50 days using the ASCO/CDC criteria of 2 negative RT-PCR assays >24 hours apart. Using alternative criteria of 1 negative RT-PCR assay (UK-NICE) or CDC clinical criteria (10 days after first positive RT-PCR and 3 days after last symptoms), median clearance times were 31 days and 13 days, respectively. Meaning: SARS-CoV-2 clearance times differ substantially depending on criteria used and may be prolonged in cancer patients.
RESUMO
ROS1-rearranged (also known as ROS1 fusion-positive) non-small-cell lung cancer is an uncommon but distinct molecular subgroup seen in approximately 1-2% of cases. Oncogene addiction due to constitutive ROS1 tyrosine kinase activation has allowed development of molecularly targeted therapies with remarkable anti-tumor activity. Both crizotinib and entrectinib, multitargeted tyrosine kinase inhibitors (TKIs) have now received approval by the FDA for treatment of patients with advanced ROS1-rearranged lung cancers; however, the clinical efficacy and safety of these drugs have been derived from expansion cohorts of single-arm phase I or basket clinical trials with relatively small populations of this clinically and molecularly distinct subgroup. Both drugs lead to high objective response rates (approximately 70-80%) and have manageable side effects, although only entrectinib has potent intracranial efficacy. Lorlatinib is an oral brain-penetrant ALK/ROS1 TKI with activity in both TKI-naïve and some crizotinib-resistant settings (albeit with limited potency against the crizotinib/entrectinib-resistant ROS1-G2032R mutation). We describe cases of advanced ROS1-rearranged lung cancer receiving crizotinib, entrectinib, and/or lorlatinib in first and later line treatment settings to dissect the current state of evidence supporting management decisions for these patients. The next generation ROS1 TKIs (repotrectinib and DS-6051b), owing to their broad activity against kinase mutations including ROS1-G2032R in preclinical studies, hold promise to transform the current treatment paradigm and permit even further gains with regards to long-term outcomes in this subset of patients.
RESUMO
Since its approval in April 2018, osimertinib has been widely adopted as first-line therapy for patients with advanced EGFR-mutant non -small cell lung cancer (NSCLC). Understanding osimertinib resistance mechanisms and currently available treatment options are essential to selecting optimal second line therapy for patients whose disease progresses during front-line osimertinib. Using data compiled from 6 osimertinib-resistance series, we describe here the heterogeneous profile of EGFR-dependent and independent mechanisms of osimertinib treatment failure. We identified MET alterations (7%-24%), EGFR C797X (0%-29%), SCLC transformation (2%-15%), and oncogene fusions (1%-10%) as the most common mechanisms of resistance. This review provides an evidence-based, algorithmic approach to the evaluation and management of post-osimertinib progression as well as a compendium of active, enrolling clinical trials for this population.