Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
NPJ Biofilms Microbiomes ; 9(1): 24, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169797

RESUMO

The ability of bacterial pathogens to establish recurrent and persistent infections is frequently associated with their ability to form biofilms. Clostridioides difficile infections have a high rate of recurrence and relapses and it is hypothesized that biofilms are involved in its pathogenicity and persistence. Biofilm formation by C. difficile is still poorly understood. It has been shown that specific molecules such as deoxycholate (DCA) or metronidazole induce biofilm formation, but the mechanisms involved remain elusive. In this study, we describe the role of the C. difficile lipoprotein CD1687 during DCA-induced biofilm formation. We showed that the expression of CD1687, which is part of an operon within the CD1685-CD1689 gene cluster, is controlled by multiple transcription starting sites and some are induced in response to DCA. Only CD1687 is required for biofilm formation and the overexpression of CD1687 is sufficient to induce biofilm formation. Using RNAseq analysis, we showed that CD1687 affects the expression of transporters and metabolic pathways and we identified several potential binding partners by pull-down assay, including transport-associated extracellular proteins. We then demonstrated that CD1687 is surface exposed in C. difficile, and that this localization is required for DCA-induced biofilm formation. Given this localization and the fact that C. difficile forms eDNA-rich biofilms, we confirmed that CD1687 binds DNA in a non-specific manner. We thus hypothesize that CD1687 is a component of the downstream response to DCA leading to biofilm formation by promoting interaction between the cells and the biofilm matrix by binding eDNA.


Assuntos
Clostridioides difficile , Clostridioides difficile/genética , Clostridioides , Proteínas de Ligação a DNA/metabolismo , Biofilmes , Lipoproteínas/genética , Lipoproteínas/metabolismo , Ácido Desoxicólico/farmacologia , Ácido Desoxicólico/metabolismo
2.
EMBO Rep ; 24(4): e56055, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36876574

RESUMO

Bat sarbecovirus BANAL-236 is highly related to SARS-CoV-2 and infects human cells, albeit lacking the furin cleavage site in its spike protein. BANAL-236 replicates efficiently and pauci-symptomatically in humanized mice and in macaques, where its tropism is enteric, strongly differing from that of SARS-CoV-2. BANAL-236 infection leads to protection against superinfection by a virulent strain. We find no evidence of antibodies recognizing bat sarbecoviruses in populations in close contact with bats in which the virus was identified, indicating that such spillover infections, if they occur, are rare. Six passages in humanized mice or in human intestinal cells, mimicking putative early spillover events, select adaptive mutations without appearance of a furin cleavage site and no change in virulence. Therefore, acquisition of a furin site in the spike protein is likely a pre-spillover event that did not occur upon replication of a SARS-CoV-2-like bat virus in humans or other animals. Other hypotheses regarding the origin of the SARS-CoV-2 should therefore be evaluated, including the presence of sarbecoviruses carrying a spike with a furin cleavage site in bats.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , SARS-CoV-2 , Furina/genética , Furina/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Mutação
3.
iScience ; 26(12): 108449, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38213785

RESUMO

Investigations of cellular responses to viral infection are commonly performed on mixed populations of infected and uninfected cells or using single-cell RNA sequencing, leading to inaccurate and low-resolution gene expression interpretations. Here, we performed deep polyA+ transcriptome analyses and novel RNA profiling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected lung epithelial cells, sorted based on the expression of the viral spike (S) protein. Infection caused a massive reduction in mRNAs and long non-coding RNAs (lncRNAs), including transcripts coding for antiviral factors, such as interferons (IFNs). This absence of IFN signaling probably explained the poor transcriptomic response of bystander cells co-cultured with S+ ones. NF-κB pathway and the inflammatory response escaped the global shutoff in S+ cells. Functional investigations revealed the proviral function of the NF-κB pathway and the antiviral activity of CYLD, a negative regulator of the pathway. Thus, our transcriptomic analysis on sorted cells revealed additional genes that modulate SARS-CoV-2 replication in lung cells.

4.
Sci Rep ; 12(1): 19274, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369470

RESUMO

Since the beginning of the SARS-CoV-2 coronavirus pandemic, genome sequencing is essential to monitor viral mutations over time and by territory. This need for complete genetic information is further reinforced by the rapid spread of variants of concern. In this paper, we assess the ability of the hybridization technique, Capture-Seq, to detect the SARS-CoV-2 genome, either partially or in its integrity on patients samples. We studied 20 patient nasal swab samples broken down into five series of four samples of equivalent viral load from CT25 to CT36+ . For this, we tested 3 multi-virus panel as well as 2 SARS-CoV-2 only panels. The panels were chosen based on their specificity, global or specific, as well as their technological difference in the composition of the probes: ssRNA, ssDNA and dsDNA. The multi-virus panels are able to capture high-abundance targets but fail to capture the lowest-abundance targets, with a high percentage of off-target reads corresponding to the abundance of the host sequences. Both SARS-CoV-2-only panels were very effective, with high percentage of reads corresponding to the target. Overall, capture followed by sequencing is very effective for the study of SARS-CoV-2 in low-abundance patient samples and is suitable for samples with CT values up to 35.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Teste para COVID-19 , Sequência de Bases , Genoma Viral
5.
Nat Commun ; 13(1): 3707, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764636

RESUMO

SHLD1 is part of the Shieldin (SHLD) complex, which acts downstream of 53BP1 to counteract DNA double-strand break (DSB) end resection and promote DNA repair via non-homologous end-joining (NHEJ). While 53BP1 is essential for immunoglobulin heavy chain class switch recombination (CSR), long-range V(D)J recombination and repair of RAG-induced DSBs in XLF-deficient cells, the function of SHLD during these processes remains elusive. Here we report that SHLD1 is dispensable for lymphocyte development and RAG-mediated V(D)J recombination, even in the absence of XLF. By contrast, SHLD1 is essential for restricting resection at AID-induced DSB ends in both NHEJ-proficient and NHEJ-deficient B cells, providing an end-protection mechanism that permits productive CSR by NHEJ and alternative end-joining. Finally, we show that this SHLD1 function is required for orientation-specific joining of AID-initiated DSBs. Our data thus suggest that 53BP1 promotes V(D)J recombination and CSR through two distinct mechanisms: SHLD-independent synapsis of V(D)J segments and switch regions within chromatin, and SHLD-dependent protection of AID-DSB ends against resection.


Assuntos
Quebras de DNA de Cadeia Dupla , Recombinação V(D)J , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Switching de Imunoglobulina/genética , Recombinação V(D)J/genética
6.
J Infect Dis ; 226(7): 1151-1161, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34979561

RESUMO

BACKGROUND: JC polyomavirus (JCV) mostly causes asymptomatic persistent renal infections but may give rise in immunosuppressed patients to neurotropic variants that replicate in the brain, causing progressive multifocal leukoencephalopathy (PML). Rearrangements in the JCV genome regulator noncoding control region (NCCR) and missense mutations in the viral capsid VP1 gene differentiate neurotropic variants from virus excreted in urine. METHODS: To investigate intrahost emergence of JCV neurotropic populations in PML, we deep sequenced JCV whole genome recovered from cerebrospinal fluid (CSF) and urine samples from 32 human immunodeficiency virus (HIV)-infected and non-HIV-infected PML patients at the single-molecule level. RESULTS: JCV strains distributed among 6 of 7 known genotypes. Common patterns of NCCR rearrangements included an initial deletion mostly located in a short 10-nucleotide sequence, followed by duplications/insertions. Multiple NCCR variants present in individual CSF samples shared at least 1 rearrangement, suggesting they stemmed from a unique viral population. NCCR variants independently acquired single or double PML-specific adaptive VP1 mutations. NCCR variants recovered from urine and CSF displayed opposite deletion or duplication patterns in binding sites for transcription factors. CONCLUSIONS: Long-read deep sequencing shed light on emergence of neurotropic JCV populations in PML.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Sequência de Bases , DNA Viral/química , Humanos , Vírus JC/genética , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma
7.
PLoS Negl Trop Dis ; 15(12): e0010053, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962930

RESUMO

BACKGROUND: Buruli ulcer is a neglected tropical disease caused by Mycobacterium ulcerans, an environmental mycobacterium. Although transmission of M. ulcerans remains poorly understood, the main identified risk factor for acquiring Buruli ulcer is living in proximity of potentially contaminated water sources. Knowledge about the clinical features of Buruli ulcer and its physiopathology is increasing, but little is known about recurrence due to reinfection. METHODOLOGY/PRINCIPAL FINDINGS: We describe two patients with Buruli ulcer recurrence due to reinfection with M. ulcerans, as demonstrated by comparisons of DNA from the strains isolated at the time of the first diagnosis and at recurrence. Based on the spatial distribution of M. ulcerans genotypes in this region and a detailed study of the behavior of these two patients with respect to sources of water as well as water bodies and streams, we formulated hypotheses concerning the sites at which they may have been contaminated. CONCLUSIONS/SIGNIFICANCE: Second episodes of Buruli ulcer may occur through reinfection, relapse or a paradoxical reaction. We formally demonstrated that the recurrence in these two patients was due to reinfection. Based on the sites at which the patients reported engaging in activities relating to water, we were able to identify possible sites of contamination. Our findings indicate that the non-random distribution of M. ulcerans genotypes in this region may provide useful information about activities at risk.


Assuntos
Úlcera de Buruli/microbiologia , Mycobacterium ulcerans/genética , Reinfecção/microbiologia , Adulto , Benin , Criança , DNA Bacteriano/genética , Feminino , Genótipo , Humanos , Masculino , Mycobacterium ulcerans/classificação , Mycobacterium ulcerans/isolamento & purificação , Filogenia
8.
Mol Cell ; 77(2): 352-367.e8, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31759823

RESUMO

cis-Regulatory communication is crucial in mammalian development and is thought to be restricted by the spatial partitioning of the genome in topologically associating domains (TADs). Here, we discovered that the Xist locus is regulated by sequences in the neighboring TAD. In particular, the promoter of the noncoding RNA Linx (LinxP) acts as a long-range silencer and influences the choice of X chromosome to be inactivated. This is independent of Linx transcription and independent of any effect on Tsix, the antisense regulator of Xist that shares the same TAD as Linx. Unlike Tsix, LinxP is well conserved across mammals, suggesting an ancestral mechanism for random monoallelic Xist regulation. When introduced in the same TAD as Xist, LinxP switches from a silencer to an enhancer. Our study uncovers an unsuspected regulatory axis for X chromosome inactivation and a class of cis-regulatory effects that may exploit TAD partitioning to modulate developmental decisions.


Assuntos
Sequência Conservada/genética , RNA Longo não Codificante/genética , Cromossomo X/genética , Animais , Linhagem Celular , Elementos Facilitadores Genéticos/genética , Camundongos , Regiões Promotoras Genéticas/genética , RNA Antissenso/genética , Elementos Silenciadores Transcricionais/genética , Transcrição Gênica/genética
10.
Microbes Infect ; 14(14): 1278-83, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22683717

RESUMO

Extracellular nucleotides and purinergic receptors participate in numerous cellular processes during viral infection. Despite their positive role in the immune response, purinergic signals can also favor the infection of cells by viruses and the pathogeny of viral diseases. Here, we highlight the multiple ambiguous roles of purinergic receptors in viral infections.


Assuntos
Receptores Purinérgicos/imunologia , Viroses/imunologia , Imunidade Adaptativa , Trifosfato de Adenosina/imunologia , Humanos , Imunidade Inata , Inflamassomos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA