Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
ACS Nano ; 17(15): 14644-14657, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37458750

RESUMO

We reveal a physical mechanism that enables the preconcentration, sorting, and characterization of charged polystyrene nanobeads and liposomes dispersed in a continuous flow within a straight micron-sized channel. Initially, a single Ψ-junction microfluidic chip is used to generate a steady-state salt concentration gradient in the direction perpendicular to the flow. As a result, fluorescent nanobeads dispersed in the electrolyte solutions accumulate into symmetric regions of the channel, appearing as two distinct symmetric stripes when the channel is observed from the top via epi-fluorescence microscopy. Depending on the electrolyte flow configuration and, thus, the direction of the salt concentration gradient field, the fluorescent stripes get closer to or apart from each other as the distance from the inlet increases. Our numerical and experimental analysis shows that although nanoparticle diffusiophoresis and hydrodynamic effects are involved in the accumulation process, diffusio-osmosis along the top and bottom channel walls plays a crucial role in the observed particles dynamics. In addition, we developed a proof-of-concept double Ψ-junction microfluidic device that exploits this accumulation mechanism for the size-based separation and size detection of nanobeads as well as for the measurement of zeta potential and charged lipid composition of liposomes under continuous flow settings. This device is also used to investigate the effect of fluid-like or gel-like states of the lipid membranes on the liposome diffusiophoretic response. The proposed strategy for solute-driven manipulation and characterization of colloids has great potential for microfluidic bioanalytical testing applications, including bioparticle preconcentration, sorting, sensing, and analysis.

2.
Langmuir ; 38(46): 14053-14062, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36350104

RESUMO

The delivery of colloidal particles in dead-end microstructures is very challenging, since these geometries do not allow net flows of particle-laden fluids; meanwhile, diffusive transport is slow and inefficient. Recently, we introduced a novel particle manipulation strategy, based on diffusiophoresis, whereby the salt concentration gradient between parallel electrolyte streams in a microgrooved channel induces the rapid (i.e., within minutes) and reversible accumulation, retention, and removal of colloidal particles in the microgrooves. In this study, we investigated the effects of salt contrast and groove depth on the accumulation process in silicon microgrooves and determined the experimental conditions that lead to a particle concentration peak of more than four times the concentration in the channel bulk. Also, we achieved an average particle concentration in the grooves of more than twice the concentration in the flowing streams and almost 2 orders of magnitude larger than the average concentration in the grooves in the absence of a salt concentration gradient. Analytical sufficient and necessary conditions for particle accumulation are also derived. Finally, we successfully tested the accumulation process in polydimethylsiloxane microgrooved channels, as they are less expensive to fabricate than silicon microgrooved substrates. The controlled and enhanced accumulation of colloidal particles in dead-end structures by solute concentration gradients has potential applications in soft matter and living systems, such as drug delivery, synthetic biology, and on-chip diagnostics.


Assuntos
Sistemas de Liberação de Medicamentos , Silício , Difusão , Membrana Celular , Eletrólitos
3.
Phys Rev Lett ; 125(24): 248002, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412037

RESUMO

The controlled transport of colloids in dead-end structures is a key capability that can enable a wide range of applications, such as biochemical analysis, drug delivery, and underground oil recovery. This Letter presents a new trapping mechanism that allows the fast (i.e., within a few minutes) and reversible accumulation of submicron particles within dead-end microgrooves by means of parallel streams with different salinity level. For the first time, particle focusing in dead-end structures is achieved under steady-state gradients. Confocal microscopy analysis and numerical investigations show that the particles are trapped at a flow recirculation region within the grooves due to a combination of diffusiophoresis transport and hydrodynamic effects. Counterintuitively, the particle velocity at the focusing point is not vanishing and, hence, the particles are continuously transported in and out of the focusing point. The accumulation process is also reversible and one can cyclically trap and release the colloids by controlling the salt concentration of the streams via a flow switching valve.

4.
Phys Rev Lett ; 121(21): 214501, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30517808

RESUMO

We report on the observation of thin salt shells that form at the periphery of evaporating pure water drops on salt. Shell shapes range from rings of inclined walls to hollow toroidal rims. We interpret this phenomenon as a consequence of a molecular coffee-stain effect by which the dissolved salt is advected toward the pinned contact line where an increased evaporation takes place. The subsequent salt supersaturation in the vicinity of the triple line drives the crystallization of the shell at the liquid-air interface. This interpretation is supported by a simple model for shell growth.

5.
Langmuir ; 32(8): 2005-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26854562

RESUMO

We report on experiments of drop evaporation on heated superhydrophobic surfaces decorated with micrometer-sized mushroom-like pillars. We analyze the influence of two parameters on the evaporation dynamics: the solid-liquid fraction and the substrate temperature, ranging between 30 and 80 °C. In the different configurations investigated, the drop evaporation appears to be controlled by the contact line dynamics (pinned or moving). The experimental results show that (i) in the pinned regime, the depinning angles increase with decreasing contact fraction and the substrate heating promotes the contact line depinning and (ii) in the moving regime, the droplet motion is described by periodic stick-slip events and contact-angle oscillations. These features are highly smoothed at the highest temperatures, with two possible mechanisms suggested to explain such a behavior, a reduction in the elasticity of the triple line and a decrease in the depinning energy barriers. For all surfaces, the observed remarkable stability of the "fakir" state to the temperature is attributed to the re-entrant micropillar curvature that prevents surface imbibition.

6.
Soft Matter ; 11(23): 4592-9, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25959867

RESUMO

Despite the fact that superhydrophobic surfaces possess useful and unique properties, their practical application has remained limited by durability issues. Among those, the wetting transition, whereby a surface gets impregnated by the liquid and permanently loses its superhydrophobicity, certainly constitutes the most limiting aspect under many realistic conditions. In this study, we revisit this so-called Cassie-to-Wenzel transition (CWT) under the broadly encountered situation of liquid drop impact. Using model hydrophobic micropillar surfaces of various geometrical characteristics and high speed imaging, we identify that CWT can occur through different mechanisms, and at different impact stages. At early impact stages, right after contact, CWT occurs through the well established dynamic pressure scenario of which we provide here a fully quantitative description. Comparing the critical wetting pressure of surfaces and the theoretical pressure distribution inside the liquid drop, we provide not only the CWT threshold but also the hardly reported wetted area which directly affects the surface spoiling. At a later stage, we report for the first time to our knowledge, a new CWT which occurs during the drop recoil toward bouncing. With the help of numerical simulations, we discuss the mechanism underlying this new transition and provide a simple model based on impulse conservation which successfully captures the transition threshold. By shedding light on the complex interaction between impacting water drops and surface structures, the present study will facilitate designing superhydrophobic surfaces with a desirable wetting state during drop impact.

7.
Soft Matter ; 11(17): 3460-9, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25799328

RESUMO

In the context of sonoporation, we use supported lipid bilayers as a model for biological membranes and investigate the interactions between the bilayer and microbubbles induced by ultrasound. Among the various types of damage caused by bubbles on the surface, our experiments exhibit a singular dynamic interaction process where bubbles are jumping on the bilayer, forming a necklace pattern of alteration on the membrane. This phenomenon was explored with different time and space resolutions and, based on our observations, we propose a model for a microbubble subjected to the combined action of van der Waals, acoustic and hydrodynamic forces. Describing the repeated jumps of the bubble, this model explains the lipid exchanges between the bubble and bilayer.


Assuntos
Bicamadas Lipídicas/efeitos da radiação , Ondas Ultrassônicas , Bicamadas Lipídicas/química , Porosidade , Sonicação
8.
Eur J Oral Sci ; 121(4): 341-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23841786

RESUMO

The objective of this study was to address the following question: 'Which properties are modified in partially demineralized surfaces, compared with non-demineralized dentin surfaces, following orthophosphoric acid-etching as performed in clinical procedures?'. For this purpose, the complementary techniques atomic force microscopy/spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and contact angle measurements were used to provide a multiscale characterization of the dentin substrate undergoing the acidic preconditioning designed to enhance wetting. Special attention was given to the influence of the etching pretreatment on the nanomechanical properties at different levels of dentin surfaces, in both dry and hydrated conditions. The four-sided pyramid model (extended Hertz contact model) proved to be accurate for calculating the apparent Young's modulus, offering new information on the elasticity of dentin. The modulus value notably decreased following etching and surface hydration. This study underlines that after the acid etching pretreatment the contribution of the nanomechanical, morphological, and physicochemical modifications has a strong influence on the dentin adhesion properties and thus plays a significant role in the coupling of the adhesive-resin composite build-up material at the dentin surface.


Assuntos
Condicionamento Ácido do Dente , Dentina/química , Módulo de Elasticidade , Ácidos Fosfóricos/efeitos adversos , Propriedades de Superfície , Desmineralização do Dente/induzido quimicamente , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Dente Serotino , Espectrometria por Raios X
9.
Phys Rev Lett ; 105(8): 084503, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20868102

RESUMO

A drop of moderate size deposited inside a circular hydraulic jump remains trapped at the shock front and does not coalesce with the liquid flowing across the jump. For a small inclination of the plate on which the liquid is impacting, the drop does not always stay at the lowest position and oscillates around it with a sometimes large amplitude, and a frequency that slightly decreases with flow rate. We suggest that this striking behavior is linked to a gyroscopic instability in which the drop tries to keep constant its angular momentum while sliding along the jump.

10.
Langmuir ; 25(20): 12293-8, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19821629

RESUMO

We experimentally investigate drop impact dynamics onto different superhydrophobic surfaces, consisting of regular polymeric micropatterns and rough carbon nanofibers, with similar static contact angles. The main control parameters are the Weber number We and the roughness of the surface. At small We, i.e., small impact velocity, the impact evolutions are similar for both types of substrates, exhibiting Fakir state, complete bouncing, partial rebouncing, trapping of an air bubble, jetting, and sticky vibrating water balls. At large We, splashing impacts emerge forming several satellite droplets, which are more pronounced for the multiscale rough carbon nanofiber jungles. The results imply that the multiscale surface roughness at nanoscale plays a minor role in the impact events for small We less than or approximately equal 120 but an important one for large We greater than or approximately equal 120. Finally, we find the effect of ambient air pressure to be negligible in the explored parameter regime We less than or approximately equal 150.

11.
Phys Rev Lett ; 99(15): 156001, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17995188

RESUMO

In some cases water droplets can completely wet microstructured superhydrophobic surfaces. The dynamics of this rapid process is analyzed by ultrahigh-speed imaging. Depending on the scales of the microstructure, the wetting fronts propagate smoothly and circularly or-more interestingly-in a stepwise manner, leading to a growing square-shaped wetted area: entering a new row perpendicular to the direction of front propagation takes milliseconds, whereas once this has happened, the row itself fills in microseconds ("zipping"). Numerical simulations confirm this view and are in quantitative agreement with the experiments.

12.
Phys Rev Lett ; 97(18): 184501, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-17155545

RESUMO

In this Letter, we study experimentally a viscous liquid curtain in an annular geometry. Gap and median radius can be varied in such a way that the base of the initially stationary cylindrical curtain is led to oscillate by decreasing the flow rate. Standing and traveling waves in the plane of the annulus are observed and a nontrivial expression linking pulsation to flow rate per surface unit and viscosity can be defined.

13.
Phys Rev Lett ; 94(13): 134502, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15903995

RESUMO

We study the transition to spatiotemporal chaos in a two-dimensional hydrodynamic experiment where liquid columns take place in the gravity induced instability of a liquid film. The film is formed below a plane grid which is used as a porous media and is continuously supplied with a controlled flow rate. This system can be either ordered (on a hexagonal structure) or disordered depending on the flow rate. We observe, for the first time in an initially structured state, a subcritical transition to spatiotemporal disorder which arises through spatiotemporal intermittency. Statistics of numbers, creations, and fusions of columns are investigated. We exhibit a critical behavior close to the directed percolation one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA