Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 46(16): 3905-3908, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388771

RESUMO

Light scattering by disordered media is a ubiquitous effect. After passing through them, the light acquires a random phase, masking or destroying associated information. Filtering this random phase is of paramount importance to many applications, such as sensing, imaging, and optical communication, to cite a few, and it is commonly achieved through computationally extensive post-processing using statistical correlation. In this work, we show that mixing noisy optical modes of various complexity in a second-order nonlinear medium can be used for efficient and straightforward filtering of a random wavefront under sum-frequency generation processes without utilizing correlation-based calculations.

2.
Opt Express ; 29(10): 15576-15586, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985255

RESUMO

We investigated the statistical properties of partially coherent optical vortex beams scattered by a $\mathcal {PT}$ dipole, consisting of a pair of point particles having balanced gain and loss. The formalism of second-order classical coherence theory is adopted, together with the first Born approximation, to obtain the cross-spectral density of the scattered field. It is shown that the radiated pattern depends strongly on the coherence properties of the incident beam and on the non-Hermitian properties of the dipole. The spectral density for the scattered radiation is ruled by two terms, one associated to the vortex structure and the other independent of the topological charge, and the competition between these terms dictates the directional properties of the scattered radiation. When they have same order of magnitude, the scattered profile resembles that of an incoherent system, with radiation being emitted in all directions in the three-dimensional space, regardless of the dipole's gain and loss properties. Depending on the gain and loss present in the dipole, the system may scatter light in some preferable directions. All of these effects are accompanied by a change in the spectral degree of coherence of the scattered field.

3.
Opt Lett ; 45(14): 4064-4067, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667355

RESUMO

By considering parity-defined Laguerre-Gaussian (LG) and Hermite-Gaussian (HG) beams as input modes, we present arguments through experimental and theoretical results in order to affirm that using HG modes as bases is more suitable for optical mode conversion than using LG modes. By analyzing the normalized overlap integral and the generated modes, we determine a clear rule for the dominant mode for nonlinear mixing of HG beams, while the same is not possible for LG beams. In addition, examples of optical modal conversion using both HG and LG modes as input beams are demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA