Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cells ; 11(21)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359797

RESUMO

Rbfox1 is a multifunctional RNA binding protein that regulates various aspects of RNA metabolism important for neuronal differentiation and normal physiology. Rbfox1 has been associated with neurodevelopmental and neurological conditions as well as age-related neurodegenerative diseases such as Alzheimer's and Parkinson's. We have shown that in mammalian retinas Rbfox1 is expressed in retinal ganglion cells (RGCs) and in amacrine cells (ACs). This study investigates the effect of advanced age (22-month-old mice) on visual function, retinal morphology and survival of injured retinal ganglion cells (RGC) in Rbfox1 knockout (KO) animals. A visual cliff test, which was used to evaluate visual function, showed that 22-month old Rbfox1 KO mice have profound depth perception deficiency. Retinal gross morphology in these animals appeared to be normal. Optic nerve crush (ONC) induced axonal injury resulted in approximately 50% of RGC loss in both Rbfox1 KO and age-matched control animals: the average RGC densities in uninjured control and Rbfox1 KO animals were 6274 ± 1673 cells/mm2 and 6004 ± 1531 cells/mm2, respectively, whereas 1 week after ONC, RGC numbers in the retinas of control and Rbfox1 KO mice were reduced to 2998 ± 858 cells/mm2 and 3036 ± 857 cells/mm2, respectively (Rbfox1 KO vs. Rbfox1 KO + ONC, p < 0.0001 and control vs. control + ONC, p < 0.0001). No significant difference between RGC numbers in Rbfox1 KO + ONC and age-matched control + ONC animals was observed, suggesting that Rbfox1 has no effect on the survival of injured RGCs. Interestingly, however, contrary to a commonly accepted view that the number of RGCs in old (18 month of age) compared to young animals is reduced by approximately 40%, the RGC densities in 22-month-old mice in this study were similar to those of 4-month-old counterparts.


Assuntos
Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Animais , Camundongos , Modelos Animais de Doenças , Mamíferos , Camundongos Knockout , Compressão Nervosa , Traumatismos do Nervo Óptico/genética , Células Ganglionares da Retina/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
2.
Biosci Rep ; 42(7)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35730583

RESUMO

Rbfox1 is a multifunctional RNA-binding protein that regulates alternative splicing, transcription, mRNA stability, and translation. Rbfox1 is an important regulator of gene networks involved in neurogenesis and neuronal function. Disruption of Rbfox function has been associated with several neurodevelopmental and neuropsychiatric disorders. We have shown earlier that Rbfox1 is expressed in retinal ganglion and amacrine cells (ACs) and that its down-regulation in adult mouse retinas leads to deficiency of depth perception. In the present study, we used several markers of ACs, including gamma-aminobutyric acid (GABA), choline acetyltransferase (ChAT), neuropeptide Y (NPY), glycine transporter (GlyT1), and vesicular glutamate transporter 3 (VGlut3) to identify types of ACs that express Rbfox1. Expression of Rbfox1 was observed predominantly in GABAergic ACs located in the inner nuclear layer (INL) and ganglion cell layer (GCL). All GABAergic/cholinergic starburst ACs and virtually all NPY-positive GABAergic ACs were also Rbfox1-positive. Among glycinergic ACs, a sparse population of Rbfox1/VGlut3-positive cells was identified, indicating that Rbfox1 is expressed in a very small population of glycinergic ACs. These data contribute to our understanding about molecular differences between various types of amacrine cells and the cell-specific gene networks regulated by Rbfox1.


Assuntos
Células Amácrinas , Retina , Células Amácrinas/metabolismo , Animais , Colina O-Acetiltransferase , Camundongos , Fatores de Processamento de RNA/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
3.
Sci Rep ; 12(1): 8705, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610341

RESUMO

This study examines retinas from a rat glaucoma model for oxidized nucleosides 8OHdG and 8OHG, biomarkers for oxidative damage of DNA and RNA, respectively. Immunohistochemical data indicate a predominant localization of 8OHdG/8OHG in retinal ganglion cells (RGCs). The levels for these oxidized DNA/RNA products were 3.2 and 2.8 fold higher at 1 and 2 weeks after intraocular pressure elevation compared to control retinas, respectively. 8OHdG/8OHG were almost exclusively associated with mitochondrial DNA/RNA: ~ 65% of 8OHdG/8OHG were associated with RNA isolated from mitochondrial fraction and ~ 35% with DNA. Furthermore, we analyzed retinas of the rd10 mouse, a model for retinitis pigmentosa, with severe degeneration of photoreceptors to determine whether high levels of 8OHdG/8OHG staining intensity in RGCs of control animals is related to the high level of mitochondrial oxidative phosphorylation necessary to support light-evoked RGC activity. No significant difference in 8OHdG/8OHG staining intensity between control and rd10 mouse retinas was observed. The results of this study suggest that high levels of 8OHdG/8OHG in RGCs of wild-type animals may lead to cell damage and progressive loss of RGCs observed during normal aging, whereas ocular hypertension-induced increase in the level of oxidatively damaged mitochondrial DNA/RNA could contribute to glaucomatous neurodegeneration.


Assuntos
Glaucoma , RNA , 8-Hidroxi-2'-Desoxiguanosina , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Glaucoma/genética , Glaucoma/metabolismo , Pressão Intraocular , Camundongos , Mitocôndrias/genética , Estresse Oxidativo , RNA/genética , RNA/metabolismo , Ratos , Retina , Células Ganglionares da Retina/metabolismo
4.
Front Neurosci ; 15: 687690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108862

RESUMO

Rbfox1 is a multifunctional RNA binding protein that regulates alternative splicing, transcription, mRNA stability and translation. Its roles in neurogenesis and neuronal functions are well established. Recent studies also implicate Rbfox1 in the regulation of gene networks that support cell survival during stress. We have earlier characterized the expression of Rbfox1 in amacrine and retinal ganglion cells (RGCs) and showed that deletion of Rbfox1 in adult animals results in depth perception deficiency. The current study investigates the effect of Rbfox1 downregulation on survival of RGCs injured by optic nerve crush (ONC). Seven days after ONC, animals sustained severe degeneration of RGC axons in the optic nerve and significant loss of RGC somas. Semi-quantitative grading of optic nerve damage in control + ONC, control + tamoxifen + ONC, and Rbfox1 -/- + ONC groups ranged from 4.6 to 4.8 on a scale of 1 (normal; no degenerated axons were noted) to 5 (total degeneration; all axons showed degenerated organelles, axonal content, and myelin sheath), indicating a severe degeneration. Among these three ONC groups, no statistical significance was observed when any two groups were compared. The number of RGC somas were quantitatively analyzed in superior, inferior, nasal and temporal retinal quadrants at 0.5, 1, and 1.5 mm from the center of the optic disc. The average RGC densities (cells/mm2) were: control 6,438 ± 1,203; control + ONC 2,779 ± 573; control + tamoxifen 6,163 ± 861; control + tamoxifen + ONC 2,573 ± 555; Rbfox1 -/- 6,437 ± 893; and Rbfox1 -/- + ONC 2,537 ± 526. The RGC loss in control + ONC, control + tamoxifen + ONC and Rbfox1 -/- + ONC was 57% (P = 1.44954E-42), 58% (P = 1.37543E-57) and 61% (P = 5.552E-59) compared to RGC numbers in the relevant uninjured groups, respectively. No statistically significant difference was observed between any two groups of uninjured animals or between any two ONC groups. Our data indicate that Rbfox1-mediated pathways have no effect on survival of RGCs injured by ONC.

5.
Sci Rep ; 10(1): 19683, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184471

RESUMO

Rbfox proteins regulate alternative splicing, mRNA stability and translation. These proteins are involved in neurogenesis and have been associated with various neurological conditions. Here, we analyzed Rbfox2 expression in adult and developing mouse retinas and the effect of its downregulation on visual function and retinal transcriptome. In adult rodents, Rbfox2 is expressed in all retinal ganglion cell (RGC) subtypes, horizontal cells, as well as GABAergic amacrine cells (ACs). Among GABAergic AC subtypes, Rbfox2 was colocalized with cholinergic starburst ACs, NPY (neuropeptide Y)- and EBF1 (early B-cell factor 1)-positive ACs. In differentiating retinal cells, Rbfox2 expression was observed as early as E12 and, unlike Rbfox1, which changes its subcellular localization from cytoplasmic to predominantly nuclear at around P0, Rbfox2 remains nuclear throughout retinal development. Rbfox2 knockout in adult animals had no detectable effect on retinal gross morphology. However, the visual cliff test revealed a significant abnormality in the depth perception of Rbfox2-deficient animals. Gene set enrichment analysis identified genes regulating the RNA metabolic process as a top enriched class of genes in Rbfox2-deficient retinas. Pathway analysis of the top 100 differentially expressed genes has identified Rbfox2-regulated genes associated with circadian rhythm and entrainment, glutamatergic/cholinergic/dopaminergic synaptic function, calcium and PI3K-AKT signaling.


Assuntos
Fatores de Processamento de RNA/metabolismo , Retina/metabolismo , Transcriptoma , Visão Ocular/fisiologia , Animais , Ritmo Circadiano , Percepção de Profundidade , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pupila/fisiologia , Fatores de Processamento de RNA/genética , RNA-Seq , Retina/crescimento & desenvolvimento
6.
PLoS One ; 13(7): e0200417, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001398

RESUMO

Rbfox1 is a splicing regulator that has been associated with various neurological conditions such as autism spectrum disorder, mental retardation, epilepsy, attention-deficit/hyperactivity disorder and schizophrenia. We show that in adult rodent retinas, Rbfox1 is expressed in all types of retinal ganglion cells (RGCs) and in certain subsets of amacrine cells (ACs), within the inner nuclear (INL) and ganglion cell (GCL) layers. In the INL, all Rbfox1-positive cells were colocalized with GABAergic ACs, however not all GABAergic ACs were immunostained for Rbfox1. In the GCL, a vast majority of GABAergic dACs were Rbfox1-immunopositive. Furthermore, all cholinergic starburst ACs (SACs) in the INL (type a) and in the GCL (type b) were Rbfox1 positive. The expression of Rbfox1 in the retina significantly overlapped with expression of Rbfox2, another member of Rbfox family of proteins. Rbfox2, in addition to RGCs and ACs, was also expressed in horizontal cells. In developing retinas at E12 and E15, Rbfox1 is localized to the cytoplasm of differentiating RGCs and ACs. Between P0 and P5, Rbfox1 subcellular localization switched from cytoplasmic to predominantly nuclear. Downregulation of Rbfox1 in adult Rbfox1loxP/loxP mice had no detectable effect on retinal gross morphology. However, the visual cliff test revealed marked abnormalities of depth perception of these animals. RNA sequencing of retinal transcriptomes of control and Rbfox1 knockout animals identified a number of Rbfox1-regulated genes that are involved in establishing neuronal circuits and synaptic transmission, including Vamp1, Vamp2, Snap25, Trak2, and Slc1A7, suggesting the role of Rbfox1 in facilitating synaptic communications between ACs and RGCs.


Assuntos
Percepção de Profundidade/fisiologia , Fatores de Processamento de RNA/metabolismo , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Regulação para Baixo , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Processamento de RNA/genética , Retina/citologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Comportamento Espacial/fisiologia , Transcriptoma
7.
Neurosci Lett ; 670: 89-93, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29398521

RESUMO

Celastrol, a quinine methide triterpene extracted from the perennial vine Tripterygium wilfordii, has been identified as a neuroprotective agent in various models of neurodegenerative disorders. We have reported earlier that systemic and intravitreal administration of celastrol stimulate the survival of retinal ganglion cells (RGCs) injured by optic nerve crush (ONC) and that mechanisms underlying celastrol׳s RGC protection may be associated with inhibition of TNF-alpha-mediated cell death. The present study evaluates the effect of celastrol on the survival of RGCs injured by ocular hypertension. Intraocular pressure (IOP) elevation resulted in approximately 23% of RGCs loss. Reduction in RGC numbers was observed in all four retinal quadrants: 30% in superior, 17% in inferior, 11% in nasal and 35% in temporal regions. Celastrol (1 mg/kg) or vehicle (DMSO) was administered three times per week by intraperitoneal injection, starting on the day of laser photocoagulation of the TM and continued for the entire duration of the experiment (5 weeks). Celastrol treatment stimulated RGC survival by an average of 24% in the entire retina compared to the vehicle-treated group. RGC numbers were increased in all four quadrants: approximately 40%, 17%, 15% and 30% more RGCs were counted in the superior, inferior, nasal and temporal regions, respectively. The average RGC numbers for the entire retinas of the celastrol/IOP group were only ∼5% and 10% lower than that in vehicle- or celastrol-injected animals with normal IOP, respectively. Our data indicate a significant celastrol-mediated neuroprotection against elevated IOP-induced injury.


Assuntos
Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Hipertensão Ocular/complicações , Células Ganglionares da Retina/efeitos dos fármacos , Triterpenos/uso terapêutico , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Degeneração Neural/etiologia , Degeneração Neural/patologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Hipertensão Ocular/patologia , Triterpenos Pentacíclicos , Ratos , Células Ganglionares da Retina/patologia , Resultado do Tratamento , Triterpenos/farmacologia
8.
Mol Genet Genomics ; 293(4): 819-830, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29423656

RESUMO

Rbpms (RNA-binding protein with multiple splicing) is a member of the RRM (RNA Recognition Motif) family of RNA-binding proteins, which is expressed as multiple alternatively spliced transcripts encoding different protein isoforms. We have shown earlier that Rbpms expression in the retina is restricted to retinal ganglion cells (RGCs), and have characterized this gene as a marker for RGCs. The aim of this study was to identify isoforms representing Rbpms in human retinas and to analyze its transcriptional regulation. We found that Rbpms is expressed as transcription variants 1 and 3 encoding isoforms A and C, respectively. These isoforms are encoded by the same first 6 exons but have different C-terminal ends encoded by exon 8 in variant 1 and exon 7 in variant 3. Computational analysis of the Rbpms 5' untranslated and flanking regions reveals the presence of three CpG islands and four predicted promoter regions (PPRs). The effect of PPR 1 (- 1672/- 1420) and PPR2 (- 330/- 79) on transcriptional activation was minimal, whereas PPR 3 (- 73/+ 177) and PPR4 (+ 274/+ 524) induced the expression by ~ 7 and ninefold compared to control, respectively. The maximum activity, a 30-fold increase above the control level, was obtained from the construct containing both PPRs 3 and 4. Site-directed mutagenesis of several cis-elements within PPR3 and PPR4 including five for Sp1, one for AP1, and two for NF-kB showed that mutation of the first three and especially the first GC box resulted in a threefold downregulation of gene expression. AP1, NF-kB, and two downstream Sp1 sites had no significant effect on expression level. The possible involvement of the GC box 1 at position - 54 in transcriptional regulation of Rbpms was corroborated by EMSA, which showed formation of a DNA-protein complex in the presence of the oligonucleotide corresponding to this Sp1-binding site.


Assuntos
Proteínas do Olho , Proteínas de Ligação a RNA , Elementos de Resposta/fisiologia , Retina/metabolismo , Fator de Transcrição Sp1/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Fator de Transcrição Sp1/genética , Transcrição Gênica
9.
Prog Retin Eye Res ; 52: 22-46, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27017896

RESUMO

Heat shock proteins (HSPs) belong to a superfamily of stress proteins that are critical constituents of a complex defense mechanism that enhances cell survival under adverse environmental conditions. Cell protective roles of HSPs are related to their chaperone functions, antiapoptotic and antinecrotic effects. HSPs' anti-apoptotic and cytoprotective characteristics, their ability to protect cells from a variety of stressful stimuli, and the possibility of their pharmacological induction in cells under pathological stress make these proteins an attractive therapeutic target for various neurodegenerative diseases; these include Alzheimer's, Parkinson's, Huntington's, prion disease, and others. This review discusses the possible roles of HSPs, particularly HSP70 and small HSPs (alpha A and alpha B crystallins) in enhancing the survival of retinal ganglion cells (RGCs) in optic neuropathies such as glaucoma, which is characterized by progressive loss of vision caused by degeneration of RGCs and their axons in the optic nerve. Studies in animal models of RGC degeneration induced by ocular hypertension, optic nerve crush and axotomy show that upregulation of HSP70 expression by hyperthermia, zinc, geranyl-geranyl acetone, 17-AAG (a HSP90 inhibitor), or through transfection of retinal cells with AAV2-HSP70 effectively supports the survival of injured RGCs. RGCs survival was also stimulated by overexpression of alpha A and alpha B crystallins. These findings provide support for translating the HSP70- and alpha crystallin-based cell survival strategy into therapy to protect and rescue injured RGCs from degeneration associated with glaucomatous and other optic neuropathies.


Assuntos
Proteínas de Choque Térmico HSP72/metabolismo , Células Ganglionares da Retina/fisiologia , alfa-Cristalinas/metabolismo , Animais , Sobrevivência Celular/fisiologia , Humanos , Modelos Biológicos
10.
Brain Res ; 1609: 21-30, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25813825

RESUMO

The present study evaluates the effect of celastrol on the survival of retinal ganglion cells (RGCs) injured by optic nerve crush (ONC). Celastrol, a quinine methide triterpene extracted from the perennial vine Tripterygium wilfordii (Celastraceae), has been identified as a potential neuroprotective candidate in a comprehensive drug screen against various neurodegenerative diseases. Two weeks after ONC, the average density of remaining RGCs in retinas of animals treated with daily intraperitoneal (i.p.) injections of celastrol (1mg/kg) was approximately 1332 cells/mm(2), or 40.8% of the Celastrol/Control group. In retinas of the Vehicle/ONC group about 381 RGCs/mm(2) were counted, which is 9.6% of the total number of RGCs in the DMSO/Control group. This corresponds to approximately a 250% increase in RGC survival mediated by celastrol treatment compared to Vehicle/ONC group. Furthermore, the average RGC number in retinas of ONC animals treated with a single intravitreal injection of 1mg/kg or 5mg/kg of celastrol was increased by approximately 80% (760 RGCs/mm(2)) and 78% (753 RGCs/mm(2)), respectively, compared to Vehicle/ONC controls (422 cells/mm(2)). Injection of 0.2mg/kg of celastrol had no significant effect on cell survival, with the average number of RGCs being 514 cells/mm(2) in celastrol-treated animals versus 422 cells/mm(2) in controls. The expression levels of Hsp70, Hsf1, Hsf2, HO-1 and TNF-alpha in the retina were analyzed to evaluate the roles of these proteins in the celastrol-mediated protection of injured RGCs. No statistically significant change in HO-1, Hsf1 and Hsp70 levels was seen in animals with ONC. An approximately 2 fold increase in Hsf2 level was observed in celastrol-treated animals with or without injury. Hsf2 level was also increased 1.8 fold in DMSO-treated animals with ONC injury compared to DMSO-treated animals with no injury suggesting that Hsf2 induction has an injury-induced component. Expression of TNF-alpha in retinas of celastrol-treated uninjured and ONC animals was reduced by approximately 2 and 1.5 fold compared to vehicle treated animals, respectively. The observed results suggest that mechanisms underlying celastrol׳s RGC protective effect are associated with inhibition of TNF-alpha-mediated cell death.


Assuntos
Fármacos Neuroprotetores/farmacologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Células Ganglionares da Retina/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Compressão Nervosa , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia , Nervo Óptico/fisiopatologia , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , Triterpenos Pentacíclicos , Ratos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Mol Neurobiol ; 48(3): 819-28, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23709342

RESUMO

Crystallins are heterogeneous proteins classified into alpha, beta, and gamma families. Although crystallins were first identified as the major structural components of the ocular lens with a principal function to maintain lens transparency, further studies have demonstrated the expression of these proteins in a wide variety of tissues and cell types. Alpha crystallins (alpha A and alpha B) share significant homology with small heat shock proteins and have chaperone-like properties, including the ability to bind and prevent the precipitation of denatured proteins and to increase cellular resistance to stress-induced apoptosis. Stress-induced upregulation of crystallin expression is a commonly observed phenomenon and viewed as a cellular response mechanism against environmental and metabolic insults. However, several studies reported downregulation of crystallin gene expression in various models of glaucomatous nerodegeneration suggesting that that the decreased levels of crystallins may affect the survival properties of retinal ganglion cells (RGCs) and thus, be associated with their degeneration. This hypothesis was corroborated by increased survival of axotomized RGCs in retinas overexpressing alpha A or alpha B crystallins. In addition to RGC protective functions of alpha crystallins, beta and gamma crystallins were implicated in RGC axonal regeneration. These findings demonstrate the importance of crystallin genes in RGC survival and regeneration and further in-depth studies are necessary to better understand the mechanisms underlying the functions of these proteins in healthy RGCs as well as during glaucomatous neurodegeneration, which in turn could help in designing new therapeutic strategies to preserve or regenerate these cells.


Assuntos
Cristalinas/metabolismo , Regeneração , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Animais , Sobrevivência Celular , Cristalinas/genética , Glaucoma/genética , Glaucoma/patologia , Humanos , Degeneração Neural/patologia
12.
Exp Eye Res ; 112: 21-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23603611

RESUMO

Intraocular pressure (IOP) elevation is considered as a major risk factor causing the progression of vision deterioration in glaucoma. Although it is known that the IOP level changes widely throughout the day and night, how the dark or light phase IOP elevation contributes to retinal ganglion cell (RGC) degeneration is still largely unclear. To examine the profile of IOP, modified laser photocoagulation was applied to the trabecular meshwork of Brown Norway rats and both light and dark phase IOPs were monitored approximately 1-2 times a week. The relationship between IOP elevation and RGC degeneration was investigated while RGC body loss was analyzed with Rbpms immunolabeling on retinal wholemount and axonal injury in the optic nerve was semi-quantified. The baseline awake dark and light IOPs were 30.4 ± 2.7 and 20.2 ± 2.1 mmHg respectively. The average dark IOP was increased to 38.2 ± 3.2 mmHg for five weeks after the laser treatment on 270° trabecular meshwork. However, there was no significant loss of RGC body and axonal injury. After laser treatment on 330° trabecular meshwork, the dark and light IOPs were significantly increased to 43.8 ± 4.6 and 23 ± 3.7 mmHg respectively for 5 weeks. The cumulative dark and light IOP elevations were 277 ± 86 and 113 ± 50 mmHg days respectively while the cumulative total (light and dark) IOP elevation was 213 ± 114 mmHg days. After 5 weeks, regional RGC body loss of 29.5 ± 15.5% and moderate axonal injury were observed. Axonal injury and loss of RGC body had a high correlation with the cumulative total IOP elevation (R(2) = 0.60 and 0.65 respectively). There was an association between the cumulative dark IOP elevation and RGC body loss (R(2) = 0.37) and axonal injury (R(2) = 0.51) whereas the associations between neuronal damages and the cumulative light IOP elevation were weak (for RGC body loss, R(2) = 0.01; for axonal injury, R(2) = 0.26). Simple linear regression model analysis showed statistical significance for the relationships between the total cumulative IOP elevation and RGC body loss (P = 0.009), and axonal injury (P = 0.016). To examine the role of light and dark IOP elevation in RGC body loss and axonal injury, analyses for the association between different light/dark IOP factors and percentage of RGC body loss/axonal injury grading were performed and only the association between the cumulative dark IOP elevation and axonal injury showed statistical significance (P = 0.033). The findings demonstrated that the cumulative total (light and dark) IOP elevation is a risk factor to RGC degeneration in a rat model of experimental glaucoma using modified partial laser photocoagulation at 330° trabecular meshwork. Further investigations are required to understand the role of longer term light and dark phase IOP elevation contributing to the progression of degeneration in different compartments of RGCs.


Assuntos
Adaptação à Escuridão , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Doenças do Nervo Óptico/fisiopatologia , Degeneração Retiniana/fisiopatologia , Células Ganglionares da Retina/patologia , Animais , Axônios/patologia , Biomarcadores/metabolismo , Glaucoma/metabolismo , Fotocoagulação a Laser , Masculino , Doenças do Nervo Óptico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Endogâmicos BN , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/metabolismo , Tonometria Ocular , Malha Trabecular/cirurgia
13.
PLoS One ; 7(4): e34810, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496866

RESUMO

Nell2 is a neuron-specific protein containing six epidermal growth factor-like domains. We have identified Nell2 as a retinal ganglion cell (RGC)-expressed gene by comparing mRNA profiles of control and RGC-deficient rat retinas. The aim of this study was to analyze Nell2 expression in wild-type and optic nerve axotomized retinas and evaluate its potential role in RGCs. Nell2-positive in situ and immunohistochemical signals were localized to irregularly shaped cells in the ganglion cell layer (GCL) and colocalized with retrogradely-labeled RGCs. No Nell2-positive cells were detected in 2 weeks optic nerve transected (ONT) retinas characterized with approximately 90% RGC loss. RT-PCR analysis showed a dramatic decrease in the Nell2 mRNA level after ONT compared to the controls. Immunoblot analysis of the Nell2 expression in the retina revealed the presence of two proteins with approximate MW of 140 and 90 kDa representing glycosylated and non-glycosylated Nell2, respectively. Both products were almost undetectable in retinal protein extracts two weeks after ONT. Proteome analysis of Nell2-interacting proteins carried out with MALDI-TOF MS (MS) identified microtubule-actin crosslinking factor 1 (Macf1), known to be critical in CNS development. Strong Macf1 expression was observed in the inner plexiform layer and GCL where it was colocalizied with Thy-1 staining. Since Nell2 has been reported to increase neuronal survival of the hippocampus and cerebral cortex, we evaluated the effect of Nell2 overexpression on RGC survival. RGCs in the nasal retina were consistently more efficiently transfected than in other areas (49% vs. 13%; n = 5, p<0.05). In non-transfected or pEGFP-transfected ONT retinas, the loss of RGCs was approximately 90% compared to the untreated control. In the nasal region, Nell2 transfection led to the preservation of approximately 58% more cells damaged by axotomy compared to non-transfected (n = 5, p<0.01) or pEGFP-transfected controls (n = 5, p<0.01).


Assuntos
Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/fisiologia , Animais , Axotomia , Sobrevivência Celular , Expressão Gênica , Imuno-Histoquímica , Masculino , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Ratos , Ratos Wistar , Células Ganglionares da Retina/metabolismo
14.
Invest Ophthalmol Vis Sci ; 52(13): 9694-702, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22110060

RESUMO

PURPOSE: To investigate whether a recently described retinal ganglion cell (RGC) marker Rbpms (RNA binding protein with multiple splicing) could be used for RGC quantification in various models of RGC degeneration. METHODS: Optic nerve crush, excitotoxicity, and elevated intraocular pressure (IOP) rat models were used. Topographic analysis of Rbpms immunolabeling was performed on retinal wholemounts. Retrograde labelings with Fluorogold (FG) and III ß-tubulin immunohistochemistry were compared. RESULTS: In the optic nerve crush model, 37%, 87%, and 93% of Rbpms-positive cells were lost 1, 2, and 4 weeks, respectively. Significant loss of Rbpms-positive cells was noted 1 week after intravitreal injection of 12, 30, and 120 nmol N-methyl-d-aspartate (NMDA), whereas coinjection of 120 nmol of NMDA along with MK-801 increased the cell number from 10% to 59%. Over 95% of Rbpms-positive cells were FG- and III ß-tubulin-positive after injury caused by optic nerve crush and NMDA injection. In rats with elevated IOP, induced by trabecular laser photocoagulation, there was a significant loss of Rbpms-positive cells compared with that of contralateral controls (P = 0.0004), and cumulative IOP elevation showed a strong linear relationship with the quantification of RGCs by Rbpms immunolabeling and retrograde labeling with FG. More than 99% of the remaining Rbpms-positive cells were double-labeled with FG. CONCLUSIONS: Rbpms can reliably be used as an RGC marker for quantitative evaluation in rat models of RGC degeneration, regardless of the nature and the location of the primary site of the injury and the extent of neurodegeneration.


Assuntos
Biomarcadores/metabolismo , Modelos Animais de Doenças , Glaucoma/metabolismo , Doenças do Nervo Óptico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células Ganglionares da Retina/citologia , Animais , Contagem de Células , Sobrevivência Celular , Maleato de Dizocilpina/farmacologia , Técnica Indireta de Fluorescência para Anticorpo , Pressão Intraocular , Masculino , N-Metilaspartato/toxicidade , Compressão Nervosa , Traumatismos do Nervo Óptico/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Wistar , Células Ganglionares da Retina/metabolismo , Estilbamidinas/metabolismo , Tonometria Ocular , Tubulina (Proteína)/metabolismo
15.
J Biol Chem ; 286(37): 32563-74, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21705333

RESUMO

The choroid plexus lining the four ventricles in the brain is where the majority of cerebrospinal fluid (CSF) is produced. The secretory function of the choroid plexus is mediated by specific transport systems that allow the directional flux of nutrients and ions into the CSF and the removal of toxins. Normal CSF dynamics and chemistry ensure that the environment for neural function is optimal. Here, we report that targeted disruption of the Slc4a5 gene encoding the electrogenic sodium bicarbonate cotransporter NBCe2 results in significant remodeling of choroid plexus epithelial cells, including abnormal mitochondrial distribution, cytoskeletal protein expression, and ion transporter polarity. These changes are accompanied by very significant abnormalities in intracerebral ventricle volume, intracranial pressure, and CSF electrolyte levels. The Slc4a5(-/-) mice are significantly more resistant to induction of seizure behavior than wild-type controls. In the retina of Slc4a5(-/-) mice, loss of photoreceptors, ganglion cells, and retinal detachment results in visual impairment assessed by abnormal electroretinogram waveforms. Our findings are the first demonstration of the fundamental importance of NBCe2 in the biology of the nervous system.


Assuntos
Plexo Corióideo/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Equilíbrio Hidroeletrolítico , Animais , Plexo Corióideo/patologia , Pressão Intracraniana/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas do Tecido Nervoso/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Descolamento Retiniano/líquido cefalorraquidiano , Descolamento Retiniano/genética , Simportadores de Sódio-Bicarbonato/genética
16.
Mol Vis ; 17: 1231-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21617748

RESUMO

PURPOSE: To evaluate the asymmetry of the anterior segment phenotype between the two eyes of a patient with Axenfeld-Rieger syndrome (ARS). METHODS: The entire database of a tertiary glaucoma practice was screened for patients with ARS. The medical records of patients with ARS were reviewed. The clinical characteristics of ocular examination of the two eyes of each patient were recorded and compared. Dental and medical information were also reviewed where available. The anterior segment phenotype was tabulated to assess asymmetry. Asymmetric anterior segment characteristics of patients with ARS were compared with reported cases in the literature. RESULTS: Eight patients with ARS were identified from screening of more than 5,000 patients of a tertiary glaucoma practice. All patients had Axenfeld-Rieger anomaly in both eyes except one patient presented with an asymmetric phenotype of the anterior segment with features of Axenfeld-Rieger anomaly in one eye, but aniridia in the other eye. This patient had non-ocular findings including flat midface, hypodontia with lack of an upper incisor, and redundant periumbilical skin, typical for ARS. A heterozygous C>T nucleotide substitution was identified in exon 4 of the pituitary homeobox 2 (PITX2) gene, resulting in the replacement of a glutamine codon (CAG) with a stop codon (TAG) at amino acid position 67. This mutation is denoted c.199C>T at the cDNA level or p.Gln67Stop (or Q67X) at the protein level. Only three cases with asymmetric anterior segment phenotype between the two eyes of a patient with AGS have been reported in the literature. CONCLUSIONS: Variability in phenotype may occur between the two eyes of an individual affected by ARS. The current case undermines the advantage of genetic testing to correctly diagnose a rare disease.


Assuntos
Aniridia/genética , Anormalidades do Olho/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas , Aniridia/diagnóstico , Segmento Anterior do Olho/anormalidades , Sequência de Bases , Criança , Diagnóstico Diferencial , Olho , Anormalidades do Olho/diagnóstico , Oftalmopatias Hereditárias , Feminino , Variação Genética , Genótipo , Heterozigoto , Proteínas de Homeodomínio/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Linhagem , Fenótipo , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
17.
Adv Exp Med Biol ; 664: 355-63, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20238036

RESUMO

Oxidative damage has been implicated in retinal ganglion cell (RGC) death after optic nerve transection (ONT) and during glaucomatous neuropathy. Here, we analyzed the expression and cell protective role of thioredoxins (TRX), key regulators of the cellular redox state, in RGCs damaged by pharmacologically induced oxidative stress, ONT and elevated intraocular pressure (IOP). The endogenous level of thioredoxin-1 (TRX1) and thioredoxin-2 (TRX2) in RGCs after axotomy and in RGC-5 cells after glutamate/buthionine sulfoximine (BSO) treatment showed upregulation of TRX2, whereas no significant change was observed in TRX1 expression. The increased level TRX-interacting protein (TXNIP) in the retinas was observed 2 and 5 weeks after IOP elevation. TRX1 level was decreased at 2 weeks and more prominently at 5 weeks after IOP increase. No change in TRX2 levels in response to IOP change was observed. Overexpression of TRX1 and TRX2 in RGC-5 treated with glutamate/BSO increased the cell survival by 2- and 3-fold 24 and 48 h after treatment, respectively. Overexpression of these proteins in the retina increased the survival of RGCs by 35 and 135% 7 and 14 days after ONT, respectively. In hypertensive eyes, RGC loss was approximately 27% 5 weeks after IOP elevation compared to control. TRX1 and TRX2 overexpression preserved approximately 45 and 37% of RGCs, respectively, that were destined to die due to IOP increase.


Assuntos
Citoproteção , Hipertensão Ocular/complicações , Traumatismos do Nervo Óptico/complicações , Estresse Oxidativo , Células Ganglionares da Retina/patologia , Tiorredoxinas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Sobrevivência Celular , Pressão Intraocular/fisiologia , Masculino , Hipertensão Ocular/fisiopatologia , Hipertensão Ocular/prevenção & controle , Traumatismos do Nervo Óptico/fisiopatologia , Traumatismos do Nervo Óptico/prevenção & controle , Ratos , Ratos Wistar
18.
Invest Ophthalmol Vis Sci ; 51(2): 1052-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19737887

RESUMO

PURPOSE: To characterize expression of the RNA binding protein (RBPMS) in the retina as a specific marker for retinal ganglion cells (RGCs). METHODS: Optic nerve transection (ONT) was performed on adult male Wistar rats. Retrograde RGC labeling was performed with FluoroGold (FG) applied to the cut surface of the optic nerve. RBPMS mRNA and protein expression in the retina was analyzed by in situ hybridization and immunohistochemistry, respectively. The expression of RBPMS in various rat tissues was analyzed with semiquantitative RT-PCR. RESULTS: RBPMS mRNA and protein expression was localized primarily to irregularly shaped cells in the ganglion cell layer of the retina. Quantitative analysis showed that almost 100% of RGCs labeled by FG were also RBPMS-positive, irrespective of their location relative to the optic nerve head. Approximately 94% to 97% of RBPMS-positive cells were also positive for Thy-1, neurofilament H, and III beta-tubulin. In 2-week ONT retinas, the remaining few RGCs were weakly stained with RBPMS compared with intact RGCs in control retinas. Outside the retina, expression of RBPMS was observed in the heart, kidney, liver, and lungs. No expression was detected in any neuronal tissues except the retina. CONCLUSIONS: The data indicate that in the retina RBPMS is selectively expressed in RGCs and therefore could serve as a marker for RGC quantification in normal retinas and for estimation of RGC loss in ocular neuropathies.


Assuntos
Biomarcadores/metabolismo , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células Ganglionares da Retina/metabolismo , Sequência de Aminoácidos , Animais , Imuno-Histoquímica , Hibridização In Situ , Masculino , Dados de Sequência Molecular , Proteínas de Neurofilamentos/metabolismo , Traumatismos do Nervo Óptico/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Estilbamidinas , Antígenos Thy-1/metabolismo
19.
Invest Ophthalmol Vis Sci ; 50(8): 3869-75, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19279307

RESUMO

PURPOSE: Stress-induced crystallin expression is commonly viewed as activation of the cell survival mechanism. The authors analyzed the expression of alphaA- and alphaB-crystallins in a rat optic nerve transection (ONT) model characterized by specific retinal ganglion cell (RGC) degeneration and determined their role in RGC survival. METHODS: ONT was performed on adult Wistar rats. Quantitative and spatial expression were examined with Western blot analysis and immunohistochemistry, respectively. Electroporation was used to deliver alphaA and alphaB expression constructs to RGCs. Cell-protective effects of alphaA and alphaB overexpression after ONT were determined by RGC density analysis. RESULTS: Expression of alphaA and alphaB in the retina was observed predominantly in the ganglion cell layer, where most crystallin-positive cells were colocalized with RGCs. Levels of alphaA and alphaB proteins after ONT were decreased 1.6-fold. The effect of alphaA and alphaB overexpression on RGC survival was evaluated 7 and 14 days after axotomy. At day 7 after ONT, 1426 +/- 70 and 1418 +/- 81 RGCs/mm(2) were present in retinas electroporated with alphaA and alphaB expression constructs, respectively, compared with 1010 +/- 121 RGCs/mm(2) in sham-transfected or 1016 +/- 88 RGCs/mm(2) in nontransfected retinas. Numbers of surviving RGCs at 14 days were 389 +/- 57 and 353.57 +/- 60 cells/mm(2) after alphaA and alphaB transfection, respectively, compared with 198 +/- 29 cells/mm(2) after transfection with the vector alone or 206 +/- 60 cells/mm(2) in nontransfected retinas. CONCLUSIONS: Increases of approximately 95% and 75% in RGC survival mediated by alphaA and alphaB overexpression, respectively, were observed 14 days after ONT. At day 7, the RGC protective effect of alphaA and alphaB overexpression was approximately 40%.


Assuntos
Nervo Óptico/fisiologia , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/metabolismo , Cadeia A de alfa-Cristalina/fisiologia , Cadeia B de alfa-Cristalina/fisiologia , Animais , Axotomia , Western Blotting , Contagem de Células , Sobrevivência Celular/fisiologia , Citoproteção/fisiologia , Eletroporação , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Masculino , Nervo Óptico/cirurgia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia , Regulação para Cima
20.
Invest Ophthalmol Vis Sci ; 50(6): 2591-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19218616

RESUMO

PURPOSE: Rod cGMP-phosphodiesterase, a key enzyme in visual transduction, is important for retinal integrity and function. Mutations in the gene encoding the phosphodiesterase beta-subunit (PDEbeta) cause retinal degeneration in animals and humans. Here the authors tested the hypothesis that elements in the 3' untranslated region (3' UTR) of the PDEbeta gene are involved in the regulation of PDEbeta expression. METHODS: Involvement of the 3' UTR of PDEbeta mRNA in the regulation of PDEbeta expression was assessed by Y-79 retinoblastoma cells or the heads of Xenopus laevis tadpoles with constructs containing the SV40 or PDEbeta promoter, the luciferase cDNA, and either the SV40 or the PDEbeta 3' UTR (or fragments of its sequence). RESULTS: Compared with the SV40 3' UTR (used as control), the entire PDEbeta 3' UTR decreased reporter gene expression in Y-79 retinoblastoma cells as well as in SY5Y neuroblastoma and 293 human embryonic kidney cell lines. However, the authors observed that two 100-nucleotide fragments from the PDEbeta 3' UTR increased while its noncanonical poly-adenylation signal abolished reporter gene expression in Y-79 retinoblastoma cells and in ex vivo experiments using Xenopus tadpole heads. In particular, an 11-nucleotide element (EURE) in one of the 100-nucleotide fragments was responsible for the upregulation of luciferase expression. CONCLUSIONS: These studies indicate that the 3' UTR of the PDEbeta mRNA is involved in the complex regulation of this gene's expression in the retina. Moreover, the results show that the PDEbeta poly-A signal has a dominant inhibitory effect over two other regions in the 3' UTR that stimulate gene expression.


Assuntos
Regiões 3' não Traduzidas/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Nucleico , Animais , Sequência de Bases , Embrião não Mamífero/metabolismo , Genes Reporter , Humanos , Rim/embriologia , Rim/metabolismo , Dados de Sequência Molecular , Neuroblastoma/genética , Retina/metabolismo , Neoplasias da Retina/genética , Retinoblastoma/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Células Tumorais Cultivadas/metabolismo , Regulação para Cima , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA