Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Eur Urol Oncol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38755094

RESUMO

Current standard-of-care systemic therapy options for locally advanced and metastatic bladder cancer (BC), which are predominantly based on cisplatin-gemcitabine combinations, are limited by significant treatment failure rates and frailty-based patient ineligibility. We previously addressed the urgent clinical need for better-tolerated BC therapeutic strategies using a drug screening approach, which identified outstanding antineoplastic activity of clofarabine in preclinical models of BC. To further assess clofarabine as a potential BC therapy component, we conducted head-to-head comparisons of responses to clofarabine versus gemcitabine in preclinical in vitro and in vivo models of BC, complemented by in silico analyses. In vitro data suggest a distinct correlation between the two antimetabolites, with higher cytotoxicity of gemcitabine, especially against several nonmalignant cell types, including keratinocytes and endothelial cells. Accordingly, tolerance of clofarabine (oral or intraperitoneal application) was distinctly better than for gemcitabine (intraperitoneal) in patient-derived xenograft models of BC. Clofarabine also exhibited distinctly superior anticancer efficacy, even at dosing regimens optimized for gemcitabine. Neither complete remission nor cure, both of which were observed with clofarabine, were achieved with any tolerable gemcitabine regimen. Taken together, our findings demonstrate that clofarabine has a better therapeutic window than gemcitabine, further emphasizing its potential as a candidate for drug repurposing in BC. PATIENT SUMMARY: We compared the anticancer activity of clofarabine, a drug used for treatment of leukemia but not bladder cancer, and gemcitabine, a drug currently used for chemotherapy against bladder cancer. Using cell cultures and mouse models, we found that clofarabine was better tolerated and more efficacious than gemcitabine, and even cured implanted tumors in mouse models. Our results suggest that clofarabine, alone or in combination schemes, might be superior to gemcitabine for the treatment of bladder cancer.

2.
J Med Chem ; 67(8): 6081-6098, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38401050

RESUMO

In this work, we investigated the anticancer activity of several novel silver(I) 2,2'-bipyridine complexes containing either triphenylphosphane (PPh3) or 1,2-bis(diphenylphosphino)ethane (dppe) ligands. All compounds were characterized by diverse analytical methods including ESI-MS spectrometry; NMR, UV-vis, and FTIR spectroscopies; and elemental analysis. Moreover, several compounds were also studied by X-ray single-crystal diffraction. Subsequently, the compounds were investigated for their anticancer activity against drug-resistant and -sensitive cancer cells. Noteworthily, neither carboplatin and oxaliplatin resistance nor p53 deletion impacted on their anticancer efficacy. MES-OV cells displayed exceptional hypersensitivity to the dppe-containing drugs. This effect was not based on thioredoxin reductase inhibition, enhanced drug uptake, or apoptosis induction. In contrast, dppe silver drugs induced paraptosis, a novel recently described form of programmed cell death. Together with the good tumor specificity of this compound's class, this work suggests that dppe-containing silver complexes could be interesting drug candidates for the treatment of resistant ovarian cancer.


Assuntos
2,2'-Dipiridil , Antineoplásicos , Fosfinas , Prata , Humanos , Fosfinas/química , Fosfinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Prata/química , Prata/farmacologia , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Apoptose/efeitos dos fármacos , Cristalografia por Raios X , Ligantes , Morte Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
3.
Adv Sci (Weinh) ; 10(32): e2301939, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37752764

RESUMO

The leading first-in-class ruthenium-complex BOLD-100 currently undergoes clinical phase-II anticancer evaluation. Recently, BOLD-100 is identified as anti-Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD-100-resistant colon and pancreatic carcinoma cells. Acute BOLD-100 treatment reduces lipid droplet contents of BOLD-100-sensitive but not -resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD-100-resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame-shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl-coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell-free BOLD-100-CoA adduct formation suggesting acetyl-CoA depletion as mechanism bridging BOLD-100-induced lipid metabolism alterations and histone acetylation-mediated gene expression deregulation. Indeed, BOLD-100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de-acetylation as central mode-of-action of BOLD-100 and metabolic programs stabilizing histone acetylation as relevant Achilles' heel of acquired BOLD-100-resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD-100 responsiveness. Summarizing, BOLD-100 is identified as epigenetically active substance acting via targeting several onco-metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD-100 resistance opens novel strategies to tackle therapy failure.


Assuntos
Antineoplásicos , Histonas , Compostos Organometálicos , Humanos , Histonas/metabolismo , Metabolismo dos Lipídeos , Acetilação , Acetilcoenzima A/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Lipídeos
4.
Lung Cancer ; 185: 107360, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37713954

RESUMO

OBJECTIVES: Pleural mesothelioma (PM) is a rare disease with dismal outcome. Systemic treatment options include chemotherapy and immunotherapy, but biomarkers for treatment personalization are missing. The only FDA-approved diagnostic biomarker is the soluble mesothelin-related protein (SMRP). Krebs von den Lungen-6 (KL-6) is a human mucin 1 (MUC1) glycoprotein, which has shown diagnostic and prognostic value as a biomarker in other malignancies. The present study investigated whether KL-6 can serve as a diagnostic and/or prognostic biomarker in PM. MATERIALS AND METHODS: Using a fully-automated chemiluminescence enzyme immunoassay (CLEIA) for KL-6 and SMRP, pleural effusion samples from 87 consecutive patients with PM and 25 patients with non-malignant pleural disorders were studied. In addition, KL-6 and SMRP levels were determined in corresponding patient sera, and in an independent validation cohort (n = 122). MUC1 mRNA and protein expression, and KL-6 levels in cell line supernatants were investigated in PM primary cell lines in vitro. RESULTS: PM patients had significantly higher KL-6 levels in pleural effusion than non-malignant controls (AUC 0.78, p < 0.0001). Among PM patients, levels were highest in those with epithelioid or biphasic histologies. There was a strong positive correlation between pleural effusion levels of KL-6 and SMRP (p < 0.0001). KL-6 levels in sera similarly associated with diagnosis of PM, however, to a lesser extent (AUC 0.71, p = 0.008). PM patients with high pleural effusion KL-6 levels (≥303 IU/mL) had significantly better overall survival (OS) compared to those with low KL-6 levels (HR 0.51, p = 0.004). Congruently, high tumor cell MUC1 mRNA expression in primary cell lines associated with prolonged corresponding patient OS (HR 0.35, p = 0.004). These findings were confirmed in an independent validation cohort. CONCLUSION: This is the first study demonstrating KL-6 as a potential novel liquid-based diagnostic and prognostic biomarker in PM.

5.
Cells ; 12(15)2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37566084

RESUMO

Pleural mesothelioma (PM) is an aggressive malignancy that develops in a unique tumor microenvironment (TME). However, cell models for studying the TME in PM are still limited. Here, we have generated and characterized novel human telomerase reverse transcriptase (hTERT)-transduced mesothelial cell and mesothelioma-associated fibroblast (Meso-CAF) models and investigated their impact on PM cell growth. Pleural mesothelial cells and Meso-CAFs were isolated from tissue of pneumothorax and PM patients, respectively. Stable expression of hTERT was induced by retroviral transduction. Primary and hTERT-transduced cells were compared with respect to doubling times, hTERT expression and activity levels, telomere lengths, proteomes, and the impact of conditioned media (CM) on PM cell growth. All transduced derivatives exhibited elevated hTERT expression and activity, and increased mean telomere lengths. Cell morphology remained unchanged, and the proteomes were similar to the corresponding primary cells. Of note, the CM of primary and hTERT-transduced Meso-CAFs stimulated PM cell growth to the same extent, while CM derived from mesothelial cells had no stimulating effect, irrespective of hTERT expression. In conclusion, all new hTERT-transduced cell models closely resemble their primary counterparts and, hence, represent valuable tools to investigate cellular interactions within the TME of PM.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Telomerase , Humanos , Proteoma/metabolismo , Telomerase/metabolismo , Mesotelioma/genética , Fibroblastos/metabolismo , Neoplasias Pleurais/genética , Microambiente Tumoral
6.
Cells ; 12(11)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37296582

RESUMO

The ABC transporter ABCA7 has been found to be aberrantly expressed in a variety of cancer types, including breast cancer. We searched for specific epigenetic and genetic alterations and alternative splicing variants of ABCA7 in breast cancer and investigated whether these alterations are associated with ABCA7 expression. By analyzing tumor tissues from breast cancer patients, we found CpGs at the exon 5-intron 5 boundary aberrantly methylated in a molecular subtype-specific manner. The detection of altered DNA methylation in tumor-adjacent tissues suggests epigenetic field cancerization. In breast cancer cell lines, DNA methylation levels of CpGs in promoter-exon 1, intron 1, and at the exon 5-intron 5 boundary were not correlated with ABCA7 mRNA levels. By qPCR involving intron-specific and intron-flanking primers, we identified intron-containing ABCA7 mRNA transcripts. The occurrence of intron-containing transcripts was neither molecular subtype-specific nor directly correlated with DNA methylation at the respective exon-intron boundaries. Treatment of breast cancer cell lines MCF-7, BT-474, SK-BR3, and MDA-MB-231 with doxorubicin or paclitaxel for 72 h resulted in altered ABCA7 intron levels. Shotgun proteomics revealed that an increase in intron-containing transcripts was associated with significant dysregulation of splicing factors linked to alternative splicing.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Metilação de DNA/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Processamento Alternativo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Cancer Lett ; 565: 216237, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211067

RESUMO

Small-molecule EGFR inhibitors have distinctly improved the overall survival especially in EGFR-mutated lung cancer. However, their use is often limited by severe adverse effects and rapid resistance development. To overcome these limitations, a hypoxia-activatable Co(III)-based prodrug (KP2334) was recently synthesized releasing the new EGFR inhibitor KP2187 in a highly tumor-specific manner only in hypoxic areas of the tumor. However, the chemical modifications in KP2187 necessary for cobalt chelation could potentially interfere with its EGFR-binding ability. Consequently, in this study, the biological activity and EGFR inhibition potential of KP2187 was compared to clinically approved EGFR inhibitors. In general, the activity as well as EGFR binding (shown in docking studies) was very similar to erlotinib and gefitinib (while other EGFR-inhibitory drugs behaved different) indicating no interference of the chelating moiety with the EGFR binding. Moreover, KP2187 significantly inhibited cancer cell proliferation as well as EGFR pathway activation in vitro and in vivo. Finally, KP2187 proved to be highly synergistic with VEGFR inhibitors such as sunitinib. This indicates that KP2187-releasing hypoxia-activated prodrug systems are promising candidates to overcome the clinically observed enhanced toxicity of EGFR-VEGFR inhibitor combination therapies.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Cloridrato de Erlotinib/farmacologia , Neoplasias Pulmonares/metabolismo , Proliferação de Células , Hipóxia/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico
8.
Pharmaceutics ; 15(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839999

RESUMO

For a variety of cancer types, platinum compounds are still among the best treatment options. However, their application is limited by side effects and drug resistance. Consequently, multi-targeted platinum(IV) prodrugs that target specific traits of the malignant tissue are interesting new candidates. Recently, cisPt(PhB)2 was synthesized which, upon reduction in the malignant tissue, releases phenylbutyrate (PhB), a metabolically active fatty acid analog, in addition to cisplatin. In this study, we in-depth investigated the anticancer properties of this new complex in cell culture and in mouse allograft experiments. CisPt(PhB)2 showed a distinctly improved anticancer activity compared to cisplatin as well as to PhB alone and was able to overcome various frequently occurring drug resistance mechanisms. Furthermore, we observed that differences in the cellular fatty acid metabolism and mitochondrial activity distinctly impacted the drug's mode of action. Subsequent analyses revealed that "Warburg-like" cells, which are characterized by deficient mitochondrial function and fatty acid catabolism, are less capable of coping with cisPt(PhB)2 leading to rapid induction of a non-apoptotic form of cell death. Summarizing, cisPt(PhB)2 is a new orally applicable platinum(IV) prodrug with promising activity especially against cisplatin-resistant cancer cells with "Warburg-like" properties.

9.
J Exp Clin Cancer Res ; 42(1): 27, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36683050

RESUMO

BACKGROUND: Pleural mesothelioma (PM) is an aggressive malignancy with poor prognosis. Unlike many other cancers, PM is mostly characterized by inactivation of tumor suppressor genes. Its highly malignant nature in absence of tumor driving oncogene mutations indicates an extrinsic supply of stimulating signals by cells of the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are an abundant cell type of the TME and have been shown to drive the progression of several malignancies. The aim of the current study was to isolate and characterize patient-derived mesothelioma-associated fibroblasts (Meso-CAFs), and evaluate their impact on PM cells. METHODS: Meso-CAFs were isolated from surgical specimens of PM patients and analyzed by array comparative genomic hybridization, next generation sequencing, transcriptomics and proteomics. Human PM cell lines were retrovirally transduced with GFP. The impact of Meso-CAFs on tumor cell growth, migration, as well as the response to small molecule inhibitors, cisplatin and pemetrexed treatment was investigated in 2D and 3D co-culture models by videomicroscopy and automated image analysis. RESULTS: Meso-CAFs show a normal diploid genotype without gene copy number aberrations typical for PM cells. They express CAF markers and lack PM marker expression. Their proteome and secretome profiles clearly differ from normal lung fibroblasts with particularly strong differences in actively secreted proteins. The presence of Meso-CAFs in co-culture resulted in significantly increased proliferation and migration of PM cells. A similar effect on PM cell growth and migration was induced by Meso-CAF-conditioned medium. Inhibition of c-Met with crizotinib, PI3K with LY-2940002 or WNT signaling with WNT-C59 significantly impaired the Meso-CAF-mediated growth stimulation of PM cells in co-culture at concentrations not affecting the PM cells alone. Meso-CAFs did not provide protection of PM cells against cisplatin but showed significant protection against the EGFR inhibitor erlotinib. CONCLUSIONS: Our study provides the first characterization of human patient-derived Meso-CAFs and demonstrates a strong impact of Meso-CAFs on PM cell growth and migration, two key characteristics of PM aggressiveness, indicating a major role of Meso-CAFs in driving PM progression. Moreover, we identify signaling pathways required for Meso-CAF-mediated growth stimulation. These data could be relevant for novel therapeutic strategies against PM.


Assuntos
Mesotelioma Maligno , Mesotelioma , Humanos , Cisplatino/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Via de Sinalização Wnt , Hibridização Genômica Comparativa , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma Maligno/metabolismo , Fibroblastos/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Microambiente Tumoral
10.
Cancers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36428694

RESUMO

Solitary fibrous tumor of the pleura (SFT) is a rare disease. Besides surgery combined with radiotherapy in nondisseminated stages, curative options are currently absent. Out of fourteen primo-cell cultures, established from surgical SFT specimens, two showed stable in vitro growth. Both cell models harbored the characteristic NAB2-STAT6 fusion and were further investigated by different preclinical methods assessing cell viability, clone formation, and protein regulation upon single-drug treatment or in response to selected treatment combinations. Both fusion-positive cell models showed-in line with the clinical experience and the literature-a low to moderate response to most of the tested cytotoxic and targeted agents. However, the multi-tyrosine kinase inhibitors ponatinib and dasatinib, as well as the anti-sarcoma compound trabectedin, revealed promising activity against SFT growth. Furthermore, both cell models spontaneously presented strong FGFR downstream signaling targetable by ponatinib. Most interestingly, the combination of either ponatinib or dasatinib with trabectedin showed synergistic effects. In conclusion, this study identified novel trabectedin-based treatment combinations with clinically approved tyrosine kinase inhibitors, using two newly established NAB2-STAT6 fusion-positive cell models. These findings can be the basis for anti-SFT drug repurposing approaches in this rare and therapy-refractory disease.

11.
EMBO Mol Med ; 14(12): e15200, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36341492

RESUMO

Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL.


Assuntos
Linfoma Cutâneo de Células T , Quinases Ativadas por p21 , Animais , Camundongos , Genômica , Xenoenxertos , Linfoma Cutâneo de Células T/tratamento farmacológico
12.
Acta Neuropathol Commun ; 10(1): 65, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484633

RESUMO

Glioblastoma (GBM) is characterized by a particularly invasive phenotype, supported by oncogenic signals from the fibroblast growth factor (FGF)/ FGF receptor (FGFR) network. However, a possible role of FGFR4 remained elusive so far. Several transcriptomic glioma datasets were analyzed. An extended panel of primary surgical specimen-derived and immortalized GBM (stem)cell models and original tumor tissues were screened for FGFR4 expression. GBM models engineered for wild-type and dominant-negative FGFR4 overexpression were investigated regarding aggressiveness and xenograft formation. Gene set enrichment analyses of FGFR4-modulated GBM models were compared to patient-derived datasets. Despite widely absent in adult brain, FGFR4 mRNA was distinctly expressed in embryonic neural stem cells and significantly upregulated in glioblastoma. Pronounced FGFR4 overexpression defined a distinct GBM patient subgroup with dismal prognosis. Expression levels of FGFR4 and its specific ligands FGF19/FGF23 correlated both in vitro and in vivo and were progressively upregulated in the vast majority of recurrent tumors. Based on overexpression/blockade experiments in respective GBM models, a central pro-oncogenic function of FGFR4 concerning viability, adhesion, migration, and clonogenicity was identified. Expression of dominant-negative FGFR4 resulted in diminished (subcutaneous) or blocked (orthotopic) GBM xenograft formation in the mouse and reduced invasiveness in zebrafish xenotransplantation models. In vitro and in vivo data consistently revealed distinct FGFR4 and integrin/extracellular matrix interactions. Accordingly, FGFR4 blockade profoundly sensitized FGFR4-overexpressing GBM models towards integrin/focal adhesion kinase inhibitors. Collectively, FGFR4 overexpression contributes to the malignant phenotype of a highly aggressive GBM subgroup and is associated with integrin-related therapeutic vulnerabilities.


Assuntos
Glioblastoma , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Animais , Carcinogênese , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Integrinas , Camundongos , Recidiva Local de Neoplasia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra
13.
Pharmaceutics ; 14(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35213972

RESUMO

Cellular energy metabolism is reprogrammed in cancer to fuel proliferation. In oncological therapy, treatment resistance remains an obstacle and is frequently linked to metabolic perturbations. Identifying metabolic changes as vulnerabilities opens up novel approaches for the prevention or targeting of acquired therapy resistance. Insights into metabolic alterations underlying ruthenium-based chemotherapy resistance remain widely elusive. In this study, colon cancer HCT116 and pancreatic cancer Capan-1 cells were selected for resistance against the clinically evaluated ruthenium complex sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (BOLD-100). Gene expression profiling identified transcriptional deregulation of carbohydrate metabolism as a response to BOLD-100 and in resistance against the drug. Mechanistically, acquired BOLD-100 resistance is linked to elevated glucose uptake and an increased lysosomal compartment, based on a defect in downstream autophagy execution. Congruently, metabolomics suggested stronger glycolytic activity, in agreement with the distinct hypersensitivity of BOLD-100-resistant cells to 2-deoxy-d-glucose (2-DG). In resistant cells, 2-DG induced stronger metabolic perturbations associated with ER stress induction and cytoplasmic lysosome deregulation. The combination with 2-DG enhanced BOLD-100 activity against HCT116 and Capan-1 cells and reverted acquired BOLD-100 resistance by synergistic cell death induction and autophagy disturbance. This newly identified enhanced glycolytic activity as a metabolic vulnerability in BOLD-100 resistance suggests the targeting of glycolysis as a promising strategy to support BOLD-100 anticancer activity.

14.
Commun Chem ; 5(1): 46, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36697790

RESUMO

Clinical efficacy of oxaliplatin is frequently limited by severe adverse effects and therapy resistance. Acquired insensitivity to oxaliplatin is, at least in part, associated with elevated levels of glutathione (GSH). In this study we report on an oxaliplatin-based platinum(IV) prodrug, which releases L-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutamate-cysteine ligase, the rate-limiting enzyme in GSH biosynthesis. Two complexes bearing either acetate (BSO-OxOAc) or an albumin-binding maleimide (BSO-OxMal) as second axial ligand were synthesized and characterized. The in vitro anticancer activity of BSO-OxOAc was massively reduced in comparison to oxaliplatin, proving its prodrug nature. Nevertheless, the markedly lower intracellular oxaliplatin uptake in resistant HCT116/OxR cells was widely overcome by BSO-OxOAc resulting in distinctly reduced resistance levels. Platinum accumulation in organs of a colorectal cancer mouse model revealed higher tumor selectivity of BSO-OxMal as compared to oxaliplatin. This corresponded with increased antitumor activity, resulting in significantly enhanced overall survival. BSO-OxMal-treated tumors exhibited reduced GSH levels, proliferative activity and enhanced DNA damage (pH2AX) compared to oxaliplatin. Conversely, pH2AX staining especially in kidney cells was distinctly increased by oxaliplatin but not by BSO-OxMal. Taken together, our data provide compelling evidence for enhanced tumor specificity of the oxaliplatin(IV)/BSO prodrug.

15.
Int J Mol Sci ; 22(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34830407

RESUMO

Due to its cost-efficiency, high resolution melting (HRM) analysis plays an important role in genotyping of candidate single nucleotide polymorphisms (SNPs). Studies indicate that HRM analysis is not only suitable for genotyping individual SNPs, but also allows genotyping of multiple SNPs in one and the same amplicon, although with limited discrimination power. By targeting the three C>T SNPs rs527559815, rs547832288, and rs16906252, located in the promoter of the O6-methylguanine-DNA methyltransferase (MGMT) gene within a distance of 45 bp, we investigated whether the discrimination power can be increased by coupling HRM analysis with pyrosequencing (PSQ). After optimizing polymerase chain reaction (PCR) conditions, PCR products subjected to HRM analysis could directly be used for PSQ. By analyzing oligodeoxynucleotide controls, representing the 36 theoretically possible variant combinations for diploid human cells (8 triple-homozygous, 12 double-homozygous, 12 double-heterozygous and 4 triple-heterozygous combinations), 34 out of the 36 variant combinations could be genotyped unambiguously by combined analysis of HRM and PSQ data, compared to 22 variant combinations by HRM analysis and 16 variant combinations by PSQ. Our approach was successfully applied to genotype stable cell lines of different origin, primary human tumor cell lines from glioma patients, and breast tissue samples.


Assuntos
Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/genética , Mama/metabolismo , Mama/patologia , Metilação de DNA/genética , Feminino , Congelamento , Genótipo , Glioma/metabolismo , Glioma/patologia , Humanos , Polimorfismo de Nucleotídeo Único/genética
16.
Acta Neuropathol ; 142(2): 339-360, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34046693

RESUMO

Ependymomas (EPN) are central nervous system tumors comprising both aggressive and more benign molecular subtypes. However, therapy of the high-risk subtypes posterior fossa group A (PF-A) and supratentorial RELA-fusion positive (ST-RELA) is limited to gross total resection and radiotherapy, as effective systemic treatment concepts are still lacking. We have recently described fibroblast growth factor receptors 1 and 3 (FGFR1/FGFR3) as oncogenic drivers of EPN. However, the underlying molecular mechanisms and their potential as therapeutic targets have not yet been investigated in detail. Making use of transcriptomic data across 467 EPN tissues, we found that FGFR1 and FGFR3 were both widely expressed across all molecular groups. FGFR3 mRNA levels were enriched in ST-RELA showing the highest expression among EPN as well as other brain tumors. We further identified high expression levels of fibroblast growth factor 1 and 2 (FGF1, FGF2) across all EPN subtypes while FGF9 was elevated in ST-EPN. Interrogation of our EPN single-cell RNA-sequencing data revealed that FGFR3 was further enriched in cycling and progenitor-like cell populations. Corroboratively, we found FGFR3 to be predominantly expressed in radial glia cells in both mouse embryonal and human brain datasets. Moreover, we detected alternative splicing of the FGFR1/3-IIIc variant, which is known to enhance ligand affinity and FGFR signaling. Dominant-negative interruption of FGFR1/3 activation in PF-A and ST-RELA cell models demonstrated inhibition of key oncogenic pathways leading to reduced cell growth and stem cell characteristics. To explore the feasibility of therapeutically targeting FGFR, we tested a panel of FGFR inhibitors in 12 patient-derived EPN cell models revealing sensitivity in the low-micromolar to nano-molar range. Finally, we gain the first clinical evidence for the activity of the FGFR inhibitor nintedanib in the treatment of a patient with recurrent ST-RELA. Together, these preclinical and clinical data suggest FGFR inhibition as a novel and feasible approach to combat aggressive EPN.


Assuntos
Ependimoma/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Ependimoma/genética , Humanos , Camundongos , Recidiva Local de Neoplasia/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética
17.
Commun Chem ; 4(1): 162, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697631

RESUMO

Landomycins are angucyclines with promising antineoplastic activity produced by Streptomyces bacteria. The aglycone landomycinone is the distinctive core, while the oligosaccharide chain differs within derivatives. Herein, we report that landomycins spontaneously form Michael adducts with biothiols, including reduced cysteine and glutathione, both cell-free or intracellularly involving the benz[a]anthraquinone moiety of landomycinone. While landomycins generally do not display emissive properties, the respective Michael adducts exerted intense blue fluorescence in a glycosidic chain-dependent manner. This allowed label-free tracking of the short-lived nature of the mono-SH-adduct followed by oxygen-dependent evolution with addition of another SH-group. Accordingly, hypoxia distinctly stabilized the fluorescent mono-adduct. While extracellular adduct formation completely blocked the cytotoxic activity of landomycins, intracellularly it led to massively decreased reduced glutathione levels. Accordingly, landomycin E strongly synergized with glutathione-depleting agents like menadione but exerted reduced activity under hypoxia. Summarizing, landomycins represent natural glutathione-depleting agents and fluorescence probes for intracellular anthraquinone-based angucycline metabolism.

18.
Cancers (Basel) ; 12(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143299

RESUMO

The small-molecule E26 transformation-specific (ETS) factor inhibitor YK-4-279 was developed for therapy of ETS/EWS fusion-driven Ewing's sarcoma. Here we aimed to identify molecular factors underlying YK-4-279 responsiveness in ETS fusion-negative cancers. Cell viability screenings that deletion of P53 induced hypersensitization against YK-4-279 especially in the BRAFV600E-mutated colon cancer model RKO. This effect was comparably minor in the BRAF wild-type HCT116 colon cancer model. Out of all ETS transcription factor family members, especially ETS1 overexpression at mRNA and protein level was induced by deletion of P53 specifically under BRAF-mutated conditions. Exposure to YK-4-279 reverted ETS1 upregulation induced by P53 knock-out in RKO cells. Despite upregulation of p53 by YK-4-279 itself in RKOp53 wild-type cells, YK-4-279-mediated hyperphosphorylation of histone histone H2A.x was distinctly more pronounced in the P53 knock-out background. YK-4-279-induced cell death in RKOp53-knock-out cells involved hyperPARylation of PARP1, translocation of the apoptosis-inducible factor AIF into nuclei, and induction of mitochondrial membrane depolarization, all hallmarks of parthanatos. Accordingly, pharmacological PARP as well as BRAFV600E inhibition showed antagonistic activity with YK-4-279 especially in the P53 knock-out background. Taken together, we identified ETS factor inhibition as a promising strategy for the treatment of notoriously therapy-resistant p53-null solid tumours with activating MAPK mutations.

19.
Angew Chem Int Ed Engl ; 59(39): 17130-17136, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32633820

RESUMO

AuIII complexes with N-heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII -NHC complexes by direct oxidation with radioactive [124 I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII -to-AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII -NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.


Assuntos
Antineoplásicos/farmacologia , Ouro/farmacologia , Compostos Heterocíclicos/farmacologia , Metano/análogos & derivados , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ouro/química , Compostos Heterocíclicos/química , Humanos , Radioisótopos do Iodo , Ligantes , Metano/química , Metano/farmacologia , Camundongos , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Células Tumorais Cultivadas
20.
Clin Cancer Res ; 26(14): 3819-3830, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32317288

RESUMO

PURPOSE: Human malignant pleural mesothelioma (MPM) is characterized by dismal prognosis. Consequently, dissection of molecular mechanisms driving malignancy is of key importance. Here we investigate whether activating mutations in the telomerase reverse transcriptase (TERT) gene promoter are present in MPM and associated with disease progression, cell immortalization, and genomic alteration patterns. EXPERIMENTAL DESIGN: TERT promoters were sequenced in 182 MPM samples and compared with clinicopathologic characteristics. Surgical specimens from 45 patients with MPM were tested for in vitro immortalization. The respective MPM cell models (N = 22) were analyzed by array comparative genomic hybridization, gene expression profiling, exome sequencing as well as TRAP, telomere length, and luciferase promoter assays. RESULTS: TERT promoter mutations were detected in 19 of 182 (10.4%) MPM cases and significantly associated with advanced disease and nonepithelioid histology. Mutations independently predicted shorter overall survival in both histologic MPM subtypes. Moreover, 9 of 9 (100%) mutated but only 13 of 36 (36.1%) wild-type samples formed immortalized cell lines. TERT promoter mutations were associated with enforced promoter activity and TERT mRNA expression, while neither telomerase activity nor telomere lengths were significantly altered. TERT promoter-mutated MPM cases exhibited distinctly reduced chromosomal alterations and specific mutation patterns. While BAP1 mutations/deletions were exclusive with TERT promoter mutations, homozygous deletions at the RBFOX1 and the GSTT1 loci were clearly enriched in mutated cases. CONCLUSIONS: TERT promoter mutations independently predict a dismal course of disease in human MPM. The altered genomic aberration pattern indicates that TERT promoter mutations identify a novel, highly aggressive MPM subtype presumably based on a specific malignant transformation process.


Assuntos
Biomarcadores Tumorais/genética , Mesotelioma Maligno/genética , Neoplasias Pleurais/genética , Telomerase/genética , Idoso , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Mesotelioma Maligno/mortalidade , Mesotelioma Maligno/patologia , Pessoa de Meia-Idade , Mutação , Pleura/patologia , Neoplasias Pleurais/mortalidade , Neoplasias Pleurais/patologia , Prognóstico , Regiões Promotoras Genéticas/genética , Estudos Retrospectivos , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA