Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 37(6): e5114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38390667

RESUMO

A quantitative biomarker for myelination, such as myelin water fraction (MWF), would boost the understanding of normative and pathological neurodevelopment, improving patients' diagnosis and follow-up. We quantified the fraction of a rapidly relaxing pool identified as MW using multicomponent three-dimensional (3D) magnetic resonance fingerprinting (MRF) to evaluate white matter (WM) maturation in typically developing (TD) children and alterations in leukodystrophies (LDs). We acquired DTI and 3D MRF-based R1, R2 and MWF data of 15 TD children and 17 LD patients (9 months-12.5 years old) at 1.5 T. We computed normative maturation curves in corpus callosum and corona radiata and performed WM tract profile analysis, comparing MWF with R1, R2 and fractional anisotropy (FA). Normative maturation curves demonstrated a steep increase for all tissue parameters in the first 3 years of age, followed by slower growth for MWF while R1, R2R2 and FA reached a plateau. Unlike FA, MWF values were similar for regions of interest (ROIs) with different degrees of axonal packing, suggesting independence from fiber bundle macro-organization and higher myelin specificity. Tract profile analysis indicated a specific spatial pattern of myelination in the major fiber bundles, consistent across subjects. LD were better distinguished from TD by MWF rather than FA, showing reduced MWF with respect to age-matched controls in both ROI-based and tract analysis. In conclusion, MRF-based MWF provides myelin-specific WM maturation curves and is sensitive to alteration due to LDs, suggesting its potential as a biomarker for WM disorders. As MRF allows fast simultaneous acquisition of relaxometry and MWF, it can represent a valuable diagnostic tool to study and follow up developmental WM disorders in children.


Assuntos
Bainha de Mielina , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Bainha de Mielina/metabolismo , Criança , Masculino , Feminino , Pré-Escolar , Lactente , Imagem de Tensor de Difusão , Água/química , Água Corporal , Imageamento por Ressonância Magnética
2.
NMR Biomed ; 37(1): e5039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37714527

RESUMO

In this study, we aimed to develop a fast and robust high-resolution technique for clinically feasible electrical properties tomography based on water content maps (wEPT) using Quantitative Transient-state Imaging (QTI), a multiparametric transient state-based method that is similar to MR fingerprinting. Compared with the original wEPT implementation based on standard spin-echo acquisition, QTI provides robust electrical properties quantification towards B1 + inhomogeneities and full quantitative relaxometry data. To validate the proposed approach, 3D QTI data of 12 healthy volunteers were acquired on a 1.5 T scanner. QTI-provided T1 maps were used to compute water content maps of the tissues using an empirical relationship based on literature ex-vivo measurements. Assuming that electrical properties are modulated mainly by tissue water content, the water content maps were used to derive electrical conductivity and relative permittivity maps. The proposed technique was compared with a conventional phase-only Helmholtz EPT (HH-EPT) acquisition both within whole white matter, gray matter, and cerebrospinal fluid masks, and within different white and gray matter subregions. In addition, QTI-based wEPT was retrospectively applied to four multiple sclerosis adolescent and adult patients, compared with conventional contrast-weighted imaging in terms of lesion delineation, and quantitatively assessed by measuring the variation of electrical properties in lesions. Results obtained with the proposed approach agreed well with theoretical predictions and previous in vivo findings in both white and gray matter. The reconstructed maps showed greater anatomical detail and lower variability compared with standard phase-only HH-EPT. The technique can potentially improve delineation of pathology when compared with conventional contrast-weighted imaging and was able to detect significant variations in lesions with respect to normal-appearing tissues. In conclusion, QTI can reliably measure conductivity and relative permittivity of brain tissues within a short scan time, opening the way to the study of electric properties in clinical settings.


Assuntos
Imageamento por Ressonância Magnética , Água , Adulto , Humanos , Adolescente , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Tomografia , Tomografia Computadorizada por Raios X , Condutividade Elétrica , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Encéfalo
3.
Appl Magn Reson ; 54(11-12): 1571-1588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38037641

RESUMO

Multidimensional Magnetic Resonance Imaging (MRI) is a versatile tool for microstructure mapping. We use a diffusion weighted inversion recovery spin echo (DW-IR-SE) sequence with spiral readouts at ultra-strong gradients to acquire a rich diffusion-relaxation data set with sensitivity to myelin water. We reconstruct 1D and 2D spectra with a two-step convex optimization approach and investigate a variety of multidimensional MRI methods, including 1D multi-component relaxometry, 1D multi-component diffusometry, 2D relaxation correlation imaging, and 2D diffusion-relaxation correlation spectroscopic imaging (DR-CSI), in terms of their potential to quantify tissue microstructure, including the myelin water fraction (MWF). We observe a distinct spectral peak that we attribute to myelin water in multi-component T1 relaxometry, T1-T2 correlation, T1-D correlation, and T2-D correlation imaging. Due to lower achievable echo times compared to diffusometry, MWF maps from relaxometry have higher quality. Whilst 1D multi-component T1 data allows much faster myelin mapping, 2D approaches could offer unique insights into tissue microstructure and especially myelin diffusion.

4.
Med Image Anal ; 77: 102387, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35180675

RESUMO

Voluntary and involuntary patient motion is a major problem for data quality in clinical routine of Magnetic Resonance Imaging (MRI). It has been thoroughly investigated and, yet it still remains unresolved. In quantitative MRI, motion artifacts impair the entire temporal evolution of the magnetization and cause errors in parameter estimation. Here, we present a novel strategy based on residual learning for retrospective motion correction in fast 3D whole-brain multiparametric MRI. We propose a 3D multiscale convolutional neural network (CNN) that learns the non-linear relationship between the motion-affected quantitative parameter maps and the residual error to their motion-free reference. For supervised model training, despite limited data availability, we propose a physics-informed simulation to generate self-contained paired datasets from a priori motion-free data. We evaluate motion-correction performance of the proposed method for the example of 3D Quantitative Transient-state Imaging at 1.5T and 3T. We show the robustness of the motion correction for various motion regimes and demonstrate the generalization capabilities of the residual CNN in terms of real-motion in vivo data of healthy volunteers and clinical patient cases, including pediatric and adult patients with large brain lesions. Our study demonstrates that the proposed motion correction outperforms current state of the art, reliably providing a high, clinically relevant image quality for mild to pronounced patient movements. This has important implications in clinical setups where large amounts of motion affected data must be discarded as they are rendered diagnostically unusable.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Adulto , Artefatos , Criança , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Estudos Retrospectivos
5.
Neuroradiology ; 63(11): 1831-1851, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33835238

RESUMO

PURPOSE: Advanced MRI-based biomarkers offer comprehensive and quantitative information for the evaluation and characterization of brain tumors. In this study, we report initial clinical experience in routine glioma imaging with a novel, fully 3D multiparametric quantitative transient-state imaging (QTI) method for tissue characterization based on T1 and T2 values. METHODS: To demonstrate the viability of the proposed 3D QTI technique, nine glioma patients (grade II-IV), with a variety of disease states and treatment histories, were included in this study. First, we investigated the feasibility of 3D QTI (6:25 min scan time) for its use in clinical routine imaging, focusing on image reconstruction, parameter estimation, and contrast-weighted image synthesis. Second, for an initial assessment of 3D QTI-based quantitative MR biomarkers, we performed a ROI-based analysis to characterize T1 and T2 components in tumor and peritumoral tissue. RESULTS: The 3D acquisition combined with a compressed sensing reconstruction and neural network-based parameter inference produced parametric maps with high isotropic resolution (1.125 × 1.125 × 1.125 mm3 voxel size) and whole-brain coverage (22.5 × 22.5 × 22.5 cm3 FOV), enabling the synthesis of clinically relevant T1-weighted, T2-weighted, and FLAIR contrasts without any extra scan time. Our study revealed increased T1 and T2 values in tumor and peritumoral regions compared to contralateral white matter, good agreement with healthy volunteer data, and high inter-subject consistency. CONCLUSION: 3D QTI demonstrated comprehensive tissue assessment of tumor substructures captured in T1 and T2 parameters. Aiming for fast acquisition of quantitative MR biomarkers, 3D QTI has potential to improve disease characterization in brain tumor patients under tight clinical time-constraints.


Assuntos
Glioma , Prótons , Encéfalo , Estudos de Viabilidade , Glioma/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética
6.
Med Image Anal ; 69: 101945, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421921

RESUMO

We propose a dictionary-matching-free pipeline for multi-parametric quantitative MRI image computing. Our approach has two stages based on compressed sensing reconstruction and deep learned quantitative inference. The reconstruction phase is convex and incorporates efficient spatiotemporal regularisations within an accelerated iterative shrinkage algorithm. This minimises the under-sampling (aliasing) artefacts from aggressively short scan times. The learned quantitative inference phase is purely trained on physical simulations (Bloch equations) that are flexible for producing rich training samples. We propose a deep and compact encoder-decoder network with residual blocks in order to embed Bloch manifold projections through multi-scale piecewise affine approximations, and to replace the non-scalable dictionary-matching baseline. Tested on a number of datasets we demonstrate effectiveness of the proposed scheme for recovering accurate and consistent quantitative information from novel and aggressively subsampled 2D/3D quantitative MRI acquisition protocols.


Assuntos
Compressão de Dados , Algoritmos , Artefatos , Imageamento por Ressonância Magnética
7.
Front Neurosci ; 15: 752780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35035351

RESUMO

A multitude of image-based machine learning segmentation and classification algorithms has recently been proposed, offering diagnostic decision support for the identification and characterization of glioma, Covid-19 and many other diseases. Even though these algorithms often outperform human experts in segmentation tasks, their limited reliability, and in particular the inability to detect failure cases, has hindered translation into clinical practice. To address this major shortcoming, we propose an unsupervised quality estimation method for segmentation ensembles. Our primitive solution examines discord in binary segmentation maps to automatically flag segmentation results that are particularly error-prone and therefore require special assessment by human readers. We validate our method both on segmentation of brain glioma in multi-modal magnetic resonance - and of lung lesions in computer tomography images. Additionally, our method provides an adaptive prioritization mechanism to maximize efficacy in use of human expert time by enabling radiologists to focus on the most difficult, yet important cases while maintaining full diagnostic autonomy. Our method offers an intuitive and reliable uncertainty estimation from segmentation ensembles and thereby closes an important gap toward successful translation of automatic segmentation into clinical routine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA