Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Biomed Eng Online ; 23(1): 47, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38750477

RESUMO

BACKGROUND: Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS: We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS: The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.


Assuntos
Diferenciação Celular , Eletroporação , Inativação Gênica , Fibras Musculares Esqueléticas , RNA Interferente Pequeno , Humanos , Eletroporação/métodos , RNA Interferente Pequeno/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia , Sobrevivência Celular , Eletroforese , Transfecção/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38709429

RESUMO

In skeletal muscle, Na+,K+-ATPase (NKA), a heterodimeric (α/ß) P-type ATPase, has an essential role in maintenance of Na+ and K+ homeostasis, excitability, and contractility. AMP-activated protein kinase (AMPK), an energy sensor, increases the membrane abundance and activity of NKA in L6 myotubes, but its potential role in regulation of NKA content in skeletal muscle, which determines maximum capacity for Na+ and K+ transport, has not been clearly delineated. We examined whether energy stress and/or AMPK affect expression of NKA subunits in rat L6 and primary human myotubes. Energy stress, induced by glucose deprivation, increased protein content of NKAα1 and NKAα2 in L6 myotubes, while decreasing the content of NKAα1 in human myotubes. Pharmacological AMPK activators (AICAR, A-769662, and diflunisal) modulated expression of NKA subunits, but their effects only partially mimicked those that occurred in response to glucose deprivation, indicating that AMPK does not mediate all effects of energy stress on NKA expression. Gene silencing of AMPKα1/α2 increased protein levels of NKAα1 in L6 myotubes and NKAα1 mRNA levels in human myotubes, while decreasing NKAα2 protein levels in L6 myotubes. Collectively, our results suggest a role for energy stress and AMPK in modulation of NKA expression in skeletal muscle. However, their modulatory effects were not conserved between L6 myotubes and primary human myotubes, which suggests that coupling between energy stress, AMPK, and regulation of NKA expression in vitro depends on skeletal muscle cell model.

3.
Function (Oxf) ; 5(3): zqae018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711930
4.
Cells ; 12(23)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067160

RESUMO

Stefin B (cystatin B) is an inhibitor of lysosomal and nuclear cysteine cathepsins. The gene for stefin B is located on human chromosome 21 and its expression is upregulated in the brains of individuals with Down syndrome. Biallelic loss-of-function mutations in the stefin B gene lead to Unverricht-Lundborg disease-progressive myoclonus epilepsy type 1 (EPM1) in humans. In our past study, we demonstrated that mice lacking stefin B were significantly more sensitive to sepsis induced by lipopolysaccharide (LPS) and secreted higher levels of interleukin 1-ß (IL-1ß) due to increased inflammasome activation in bone marrow-derived macrophages. Here, we report lower interleukin 1-ß processing and caspase-11 expression in bone marrow-derived macrophages prepared from mice that have an additional copy of the stefin B gene. Increased expression of stefin B downregulated mitochondrial reactive oxygen species (ROS) generation and lowered the NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in macrophages. We determined higher AMP-activated kinase phosphorylation and downregulation of mTOR activity in stefin B trisomic macrophages-macrophages with increased stefin B expression. Our study showed that increased stefin B expression downregulated mitochondrial ROS generation and increased autophagy. The present work contributes to a better understanding of the role of stefin B in regulation of autophagy and inflammasome activation in macrophages and could help to develop new treatments.


Assuntos
Cistatina B , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP , Cistatina B/fisiologia , Inflamassomos/metabolismo , Interleucina-1 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição
5.
Front Physiol ; 14: 1215686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565142

RESUMO

Modulating body temperature, mostly through the use of antipyretics, is a commonly employed therapeutic intervention in medical practice. However, emerging evidence suggests that hyperthermia could serve as an adjuvant therapy for patients with infection. We performed a narrative review to explore the application of therapeutic hyperthermia in the treatment of infection. A number of studies have been performed in the pre-antibiotic era, enrolling patients with neurosyphilis and gonococcal infections, with reported cure rates at around 60%-80%. We have outlined the potential molecular and immunological mechanisms explaining the possible beneficial effects of therapeutic hyperthermia. For some pathogens increased temperature exerts a direct negative effect on virulence; however, it is presumed that temperature driven activation of the immune system is probably the most important factor affecting microbial viability. Lastly, we performed a review of modern-era studies where modulation of body temperature has been used as a treatment strategy. In trials of therapeutic hypothermia in patients with infection worse outcomes have been observed in the hypothermia group. Use of antipyretics has not been associated with any improvement in clinical outcomes. In modern-era therapeutic hyperthermia achieved by physical warming has been studied in one pilot trial, and better survival was observed in the hyperthermia group. To conclude, currently there is not enough data to support the use of therapeutic hyperthermia outside clinical trials; however, available studies are in favor of at least a temperature tolerance strategy for non-neurocritical patients.

6.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629081

RESUMO

Gene immunotherapy has become an important approach in the treatment of cancer. One example is the introduction of genes encoding immunostimulatory cytokines, such as interleukin 2 and interleukin 12, which stimulate immune cells in tumours. The aim of our study was to determine the effects of gene electrotransfer of plasmids encoding interleukin 2 and interleukin 12 individually and in combination in the CT26 murine colon carcinoma cell line in mice. In the in vitro experiment, the pulse protocol that resulted in the highest expression of IL-2 and IL-12 mRNA and proteins was used for the in vivo part. In vivo, tumour growth delay and also complete response were observed in the group treated with the plasmid combination. Compared to the control group, the highest levels of various immunostimulatory cytokines and increased immune infiltration were observed in the combination group. Long-term anti-tumour immunity was observed in the combination group after tumour re-challenge. In conclusion, our combination therapy efficiently eradicated CT26 colon carcinoma in mice and also generated strong anti-tumour immune memory.


Assuntos
Carcinoma , Neoplasias do Colo , Animais , Camundongos , Interleucina-2/genética , Interleucina-12/genética , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Imunoterapia , Citocinas
7.
Toxicology ; 494: 153588, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419273

RESUMO

The uncharged 3-hydroxy-2-pyridine aldoximes with protonatable tertiary amines are studied as antidotes in toxic organophosphates (OP) poisoning. Due to some of their specific structural features, we hypothesize that these compounds could exert diverse biological activity beyond their main scope of application. To examine this further, we performed an extensive cell-based assessment to determine their effects on human cells (SH-SY5Y, HEK293, HepG2, HK-2, myoblasts and myotubes) and possible mechanism of action. As our results indicated, aldoxime having a piperidine moiety did not induce significant toxicity up to 300 µM within 24 h, while those with a tetrahydroisoquinoline moiety, in the same concentration range, showed time-dependent effects and stimulated mitochondria-mediated activation of the intrinsic apoptosis pathway through ERK1/2 and p38-MAPK signaling and subsequent activation of initiator caspase 9 and executive caspase 3 accompanied with DNA damage as observed already after 4 h exposure. Mitochondria and fatty acid metabolism were also likely targets of 3-hydroxy-2-pyridine aldoximes with tetrahydroisoquinoline moiety, due to increased phosphorylation of acetyl-CoA carboxylase. In silico analysis predicted kinases as their most probable target class, while pharmacophores modeling additionally predicted the inhibition of a cytochrome P450cam. Overall, if the absence of significant toxicity for piperidine bearing aldoxime highlights the potential of its further studies in medical counter-measures, the observed biological activity of aldoximes with tetrahydroisoquinoline moiety could be indicative for future design of compounds either in a negative context in OP antidotes design, or in a positive one for design of compounds for the treatment of other phenomena like cell proliferating malignancies.


Assuntos
Neuroblastoma , Tetra-Hidroisoquinolinas , Humanos , Antídotos/química , Células HEK293 , Oximas/toxicidade , Oximas/química , Organofosfatos/química , Piridinas , Apoptose , Transdução de Sinais , Piperidinas , Tetra-Hidroisoquinolinas/toxicidade
8.
Front Endocrinol (Lausanne) ; 14: 1139303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033214

RESUMO

Expression of patatin-like phospholipase domain containing protein 7 (PNPLA7), also known as neuropathy target esterase-related esterase (NRE), a lysophospholipase, increases with fasting and decreases with feeding in mouse skeletal muscle, indicating it is regulated by insulin, counterregulatory hormones, such as glucocorticoids and catecholamines, and/or nutrients. In cultured mouse adipocytes insulin reduces Pnpla7 expression, underscoring the possibility that insulin regulates PNPLA7 in skeletal muscle. The first aim of this study was to establish whether PNPLA7 is functionally expressed in cultured human skeletal muscle cells. The second aim was to determine whether PNPLA7 is regulated by insulin, glucocorticoids, cAMP/protein kinase A pathway, and/or glucose. Cultured human skeletal muscle cells expressed PNPLA7 mRNA and protein. Gene silencing of PNPLA7 in myoblasts reduced the phosphorylation of 70 kDa ribosomal protein S6 kinase and ribosomal protein S6 as well as the abundance of α1-subunit of Na+,K+-ATPase and acetyl-CoA carboxylase, indirectly suggesting that PNPLA7 is functionally important. In myotubes, insulin suppressed PNPLA7 mRNA at 1 g/L glucose, but not at low (0.5 g/L) or high (4.5 g/L) concentrations. Treatment with synthetic glucocorticoid dexamethasone and activator of adenylyl cyclase forskolin had no effect on PNPLA7 regardless of glucose concentration, while dibutyryl-cAMP, a cell-permeable cAMP analogue, suppressed PNPLA7 mRNA at 4.5 g/L glucose. The abundance of PNPLA7 protein correlated inversely with the glucose concentrations. Collectively, our results highlight that PNPLA7 in human myotubes is regulated by metabolic signals, implicating a role for PNPLA7 in skeletal muscle energy metabolism.


Assuntos
Glucose , Insulina , Humanos , Camundongos , Animais , Insulina/farmacologia , Insulina/metabolismo , Glucose/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Glucocorticoides/metabolismo , RNA Mensageiro/metabolismo
9.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233091

RESUMO

Neuronal agrin, a heparan sulphate proteoglycan secreted by the α-motor neurons, promotes the formation and maintenance of the neuromuscular junction by binding to Lrp4 and activating muscle-specific kinase (MuSK). Neuronal agrin also promotes myogenesis by enhancing differentiation and maturation of myotubes, but its effect on proliferating human myoblasts, which are often considered to be unresponsive to agrin, remains unclear. Using primary human myoblasts, we determined that neuronal agrin induced transient dephosphorylation of ERK1/2, while c-Abl, STAT3, and focal adhesion kinase were unresponsive. Gene silencing of Lrp4 and MuSK markedly reduced the BrdU incorporation, suggesting the functional importance of the Lrp4/MuSK complex for myoblast proliferation. Acute and chronic treatments with neuronal agrin increased the proliferation of human myoblasts in old donors, but they did not affect the proliferation of myoblasts in young donors. The C-terminal fragment of agrin which lacks the Lrp4-binding site and cannot activate MuSK had a similar age-dependent effect, indicating that the age-dependent signalling pathways activated by neuronal agrin involve the Lrp4/MuSK receptor complex as well as an Lrp4/MuSK-independent pathway which remained unknown. Collectively, our results highlight an age-dependent role for neuronal agrin in promoting the proliferation of human myoblasts.


Assuntos
Fatores Etários , Agrina , Proteínas Relacionadas a Receptor de LDL , Agrina/genética , Agrina/metabolismo , Bromodesoxiuridina , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal , Proteoglicanas de Heparan Sulfato , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Neurônios Motores/metabolismo , Mioblastos/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
11.
Arh Hig Rada Toksikol ; 73(4): 277-284, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607726

RESUMO

Current research has shown that several imidazolium and chlorinated bispyridinium oximes are cytotoxic and activate different mechanisms or types of cell death. To investigate this further, we analysed interactions between these oximes and acetylcholine receptors (AChRs) and how they affect several signalling pathways to find a relation between the observed toxicities and their effects on these specific targets. Chlorinated bispyridinium oximes caused time-dependent cytotoxicity by inhibiting the phosphorylation of STAT3 and AMPK without decreasing ATP and activated ERK1/2 and p38 MAPK signal cascades. Imidazolium oximes induced a time-independent and significant decrease in ATP and inhibition of the ERK1/2 signalling pathway along with phosphorylation of p38 MAPK, AMPK, and ACC. These pathways are usually triggered by a change in cellular energy status or by external signals, which suggests that oximes interact with some membrane receptors. Interestingly, in silico analysis also indicated that the highest probability of interaction for all of our oximes is with the family of G-coupled membrane receptors (GPCR). Furthermore, our experimental results showed that the tested oximes acted as acetylcholine antagonists for membrane AChRs. Even though oxime interactions with membrane receptors need further research and clarification, our findings suggest that these oximes make promising candidates for the development of specific therapies not only in the field of cholinesterase research but in other fields too, such as anticancer therapy via altering the Ca2+ flux involved in cancer progression.


Assuntos
Reativadores da Colinesterase , Neuroblastoma , Humanos , Oximas/farmacologia , Antídotos/farmacologia , Proteínas Quinases Ativadas por AMP , Compostos de Piridínio/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno , Trifosfato de Adenosina , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo
12.
J Membr Biol ; 254(5-6): 531-548, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748042

RESUMO

Na+,K+-ATPase (NKA) is essential for maintenance of cellular and whole-body water and ion homeostasis. In the kidney, a major site of ion transport, NKA consumes ~ 50% of ATP, indicating a tight coordination of NKA and energy metabolism. AMP-activated protein kinase (AMPK), a cellular energy sensor, regulates NKA by modulating serine phosphorylation of the α1-subunit, but whether it modulates other important regulatory phosphosites, such as Tyr10, is unknown. Using human kidney (HK-2) cells, we determined that the phosphorylation of Tyr10 was stimulated by the epidermal growth factor (EGF), which was opposed by inhibitors of Src kinases (PP2), tyrosine kinases (genistein), and EGF receptor (EGFR, gefitinib). AMPK activators AICAR and A-769662 suppressed the EGF-stimulated phosphorylation of EGFR (Tyr1173) and NKAα1 at Tyr10. The phosphorylation of Src (Tyr416) was unaltered by AICAR and increased by A-769662. Conversely, ouabain (100 nM), a pharmacological NKA inhibitor and a putative adrenocortical hormone, enhanced the EGF-stimulated Tyr10 phosphorylation without altering the phosphorylation of EGFR (Tyr1173) or Src (Tyr416). Ouabain (100-1000 nM) increased the ADP:ATP ratio, while it suppressed the lactate production and the oxygen consumption rate in a dose-dependent manner. Treatment with ouabain or gene silencing of NKAα1 or NKAα3 subunit did not activate AMPK. In summary, AMPK activators and ouabain had antagonistic effects on the phosphorylation of NKAα1 at Tyr10 in cultured HK-2 cells, which implicates a role for Tyr10 in coordinated regulation of NKA-mediated ion transport and energy metabolism.


Assuntos
Rim , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Íons/metabolismo , Rim/metabolismo , Ouabaína/farmacologia , Fosforilação/efeitos dos fármacos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
13.
Cells ; 10(8)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34440840

RESUMO

Cystatin C is a potent cysteine protease inhibitor that plays an important role in various biological processes including cancer, cardiovascular diseases and neurodegenerative diseases. However, the role of CstC in inflammation is still unclear. In this study we demonstrated that cystatin C-deficient mice were significantly more sensitive to the lethal LPS-induced sepsis. We further showed increased caspase-11 gene expression and enhanced processing of pro-inflammatory cytokines IL-1ß and IL-18 in CstC KO bone marrow-derived macrophages (BMDM) upon LPS and ATP stimulation. Pre-treatment of BMDMs with the cysteine cathepsin inhibitor E-64d did not reverse the effect of CstC deficiency on IL-1ß processing and secretion, suggesting that the increased cysteine cathepsin activity determined in CstC KO BMDMs is not essential for NLRP3 inflammasome activation. The CstC deficiency had no effect on (mitochondrial) reactive oxygen species (ROS) generation, the MAPK signaling pathway or the secretion of anti-inflammatory cytokine IL-10. However, CstC-deficient BMDMs showed dysfunctional autophagy, as autophagy induction via mTOR and AMPK signaling pathways was suppressed and accumulation of SQSTM1/p62 indicated a reduced autophagic flux. Collectively, our study demonstrates that the excessive inflammatory response to the LPS-induced sepsis in CstC KO mice is dependent on increased caspase-11 expression and impaired autophagy, but is not associated with increased cysteine cathepsin activity.


Assuntos
Cistatina C/genética , Lipopolissacarídeos/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/etiologia , Animais , Autofagia/genética , Caspases Iniciadoras/genética , Caspases Iniciadoras/metabolismo , Cistatina C/deficiência , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucina/análogos & derivados , Leucina/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Sepse/mortalidade , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
14.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445316

RESUMO

Inhibition of pyruvate dehydrogenase kinase (PDK) emerged as a potential strategy for treatment of cancer and metabolic disorders. Dichloroacetate (DCA), a prototypical PDK inhibitor, reduces the abundance of some PDK isoenzymes. However, the underlying mechanisms are not fully characterized and may differ across cell types. We determined that DCA reduced the abundance of PDK1 in breast (MDA-MB-231) and prostate (PC-3) cancer cells, while it suppressed both PDK1 and PDK2 in skeletal muscle cells (L6 myotubes). The DCA-induced PDK1 suppression was partially dependent on hypoxia-inducible factor-1α (HIF-1α), a transcriptional regulator of PDK1, in cancer cells but not in L6 myotubes. However, the DCA-induced alterations in the mRNA and the protein levels of PDK1 and/or PDK2 did not always occur in parallel, implicating a role for post-transcriptional mechanisms. DCA did not inhibit the mTOR signaling, while inhibitors of the proteasome or gene silencing of mitochondrial proteases CLPP and AFG3L2 did not prevent the DCA-induced reduction of the PDK1 protein levels. Collectively, our results suggest that DCA reduces the abundance of PDK in an isoform-dependent manner via transcriptional and post-transcriptional mechanisms. Differential response of PDK isoenzymes to DCA might be important for its pharmacological effects in different types of cells.


Assuntos
Ácido Dicloroacético/farmacologia , Inibidores Enzimáticos/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Proteases Dependentes de ATP/antagonistas & inibidores , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Linhagem Celular Tumoral , Endopeptidase Clp/antagonistas & inibidores , Endopeptidase Clp/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Células PC-3 , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Ratos
15.
Arch Toxicol ; 95(8): 2737-2754, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34173857

RESUMO

Oximes, investigated as antidotes against organophosphates (OP) poisoning, are known to display toxic effects on a cellular level, which could be explained beyond action on acetylcholinesterase as their main target. To investigate this further, we performed an in vitro cell-based evaluation of effects of two structurally diverse oxime groups at concentrations of up to 800 µM, on several cell models: skeletal muscle, kidney, liver, and neural cells. As indicated by our results, compounds with an imidazolium core induced necrosis, unregulated cell death characterized by a cell burst, increased formation of reactive oxygen species, and activation of antioxidant scavenging. On the other hand, oximes with a pyridinium core activated apoptosis through specific caspases 3, 8, and/or 9. Interestingly, some of the compounds exhibited a synergistic effect. Moreover, we generated a pharmacophore model for each oxime series and identified ligands from public databases that map to generated pharmacophores. Several interesting hits were obtained including chemotherapeutics and specific inhibitors. We were able to define the possible structural features of tested oximes triggering toxic effects: chlorine atoms in combination with but-2(E)-en-1,4-diyl linker and adding a second benzene ring with substituents such as chlorine and/or methyl on the imidazolium core. Such oximes could not be used in further OP antidote development research, but could be introduced in other research studies on new specific targets. This could undoubtedly result in an overall improved wider use of unexplored oxime database created so far in OP antidotes field of research in a completely new perspective.


Assuntos
Antídotos/toxicidade , Oximas/toxicidade , Compostos de Piridínio/toxicidade , Morte Celular Regulada/efeitos dos fármacos , Animais , Antídotos/química , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Cães , Sinergismo Farmacológico , Humanos , Células Madin Darby de Rim Canino , Oximas/administração & dosagem , Oximas/química , Compostos de Piridínio/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
16.
Scand J Med Sci Sports ; 31(8): 1636-1646, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33837592

RESUMO

Effects of low-load blood flow restricted (LL-BFR) training remain unexplored in patients with ACL rupture. Our hypothesis was that LL-BFR training triggers augmented gains in knee muscle strength and size, which are paralleled with transcriptional responses of hypoxia-regulated genes and myokines. Eighteen volunteers (age 37.5 ± 9 years) planned for ACL reconstruction, participated in the study. Twelve were divided between BFR group, performing 9 sessions of LL-BFR exercise, and SHAM-BFR group performing equal training with sham vascular occlusion. Six subjects served as a control for muscle biopsy analysis. Cross-sectional area (CSA) and isokinetic strength of knee muscles were assessed before and after the training. Change in CSAquad was significantly (p < 0.01) larger in BFR (4.9%) compared with SHAM-BFR (1.3%). Similarly, change in peak torque of knee extensors was significantly (p < 0.05) larger in BFR (14%) compared with SHAM-BFR (-1%). The decrease in fatigue index of knee extensors (6%) was larger (p < 0.01) in BFR than in SHAM-BFR (2%). mRNA expression of HIF-1α in the vastus lateralis was reduced (p < 0.05) in SHAM-BFR, while VEGF-A mRNA tended to be higher in BFR. The mRNA expression of myostatin and its receptor were reduced (p < 0.05) in the semitendinosus after both types of training. Expression of IL-6, its receptors IL-6Rα and gp130, as well as musclin were similar in control and training groups. In conclusion, our results show augmented strength and endurance of knee extensors but less of the flexors. LL-BFR training is especially effective for conditioning of knee extensors in this population.


Assuntos
Lesões do Ligamento Cruzado Anterior/fisiopatologia , Lesões do Ligamento Cruzado Anterior/reabilitação , Músculos Isquiossurais/fisiologia , Força Muscular/fisiologia , Músculo Quadríceps/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Treinamento Resistido/métodos , Adaptação Fisiológica , Adulto , Lesões do Ligamento Cruzado Anterior/cirurgia , Constrição , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Método Simples-Cego , Torniquetes
17.
PLoS One ; 16(2): e0247377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33635930

RESUMO

Denervation reduces the abundance of Na+,K+-ATPase (NKA) in skeletal muscle, while reinnervation increases it. Primary human skeletal muscle cells, the most widely used model to study human skeletal muscle in vitro, are usually cultured as myoblasts or myotubes without neurons and typically do not contract spontaneously, which might affect their ability to express and regulate NKA. We determined how differentiation, de novo innervation, and electrical pulse stimulation affect expression of NKA (α and ß) subunits and NKA regulators FXYD1 (phospholemman) and FXYD5 (dysadherin). Differentiation of myoblasts into myotubes under low serum conditions increased expression of myogenic markers CD56 (NCAM1), desmin, myosin heavy chains, dihydropyridine receptor subunit α1S, and SERCA2 as well as NKAα2 and FXYD1, while it decreased expression of FXYD5 mRNA. Myotubes, which were innervated de novo by motor neurons in co-culture with the embryonic rat spinal cord explants, started to contract spontaneously within 7-10 days. A short-term co-culture (10-11 days) promoted mRNA expression of myokines, such as IL-6, IL-7, IL-8, and IL-15, but did not affect mRNA expression of NKA, FXYDs, or myokines, such as musclin, cathepsin B, meteorin-like protein, or SPARC. A long-term co-culture (21 days) increased the protein abundance of NKAα1, NKAα2, FXYD1, and phospho-FXYD1Ser68 without attendant changes in mRNA levels. Suppression of neuromuscular transmission with α-bungarotoxin or tubocurarine for 24 h did not alter NKA or FXYD mRNA expression. Electrical pulse stimulation (48 h) of non-innervated myotubes promoted mRNA expression of NKAß2, NKAß3, FXYD1, and FXYD5. In conclusion, low serum concentration promotes NKAα2 and FXYD1 expression, while de novo innervation is not essential for upregulation of NKAα2 and FXYD1 mRNA in cultured myotubes. Finally, although innervation and EPS both stimulate contractions of myotubes, they exert distinct effects on the expression of NKA and FXYDs.


Assuntos
Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Músculo Esquelético/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Estimulação Elétrica , Regulação da Expressão Gênica , Humanos , Contração Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Ratos
18.
J Muscle Res Cell Motil ; 42(1): 77-97, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33398789

RESUMO

AMP-activated protein kinase (AMPK) is a cellular energy gauge and a major regulator of cellular energy homeostasis. Once activated, AMPK stimulates nutrient uptake and the ATP-producing catabolic pathways, while it suppresses the ATP-consuming anabolic pathways, thus helping to maintain the cellular energy balance under energy-deprived conditions. As much as ~ 20-25% of the whole-body ATP consumption occurs due to a reaction catalysed by Na+,K+-ATPase (NKA). Being the single most important sink of energy, NKA might seem to be an essential target of the AMPK-mediated energy saving measures, yet NKA is vital for maintenance of transmembrane Na+ and K+ gradients, water homeostasis, cellular excitability, and the Na+-coupled transport of nutrients and ions. Consistent with the model that AMPK regulates ATP consumption by NKA, activation of AMPK in the lung alveolar cells stimulates endocytosis of NKA, thus suppressing the transepithelial ion transport and the absorption of the alveolar fluid. In skeletal muscles, contractions activate NKA, which opposes a rundown of transmembrane ion gradients, as well as AMPK, which plays an important role in adaptations to exercise. Inhibition of NKA in contracting skeletal muscle accentuates perturbations in ion concentrations and accelerates development of fatigue. However, different models suggest that AMPK does not inhibit or even stimulates NKA in skeletal muscle, which appears to contradict the idea that AMPK maintains the cellular energy balance by always suppressing ATP-consuming processes. In this short review, we examine the role of AMPK in regulation of NKA in skeletal muscle and discuss the apparent paradox of AMPK-stimulated ATP consumption.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina Trifosfatases/metabolismo , Íons/metabolismo , Músculo Esquelético/metabolismo , Humanos
19.
Cartilage ; 13(1_suppl): 456S-463S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32028796

RESUMO

OBJECTIVE: To evaluate the in vivo effect of a single intra-articular injection of local anesthetic (LA) lidocaine on the viability of articular cartilage in the intact or osteoarthritic (OA) human knees, and to measure the synovial postinjection concentration of lidocaine in the knee. DESIGN: This study includes 3 interconnected experiments: (A) Synovial LA concentration measurement after a 2% lidocaine injection before knee arthroscopy in 10 patients by liquid chromatography-tandem mass spectrometry (LC-MS/MS). (B) Human osteochondral explants (N = 27) from intact knees procured at autopsies were incubated for different time intervals (30 minutes, 2 hours, 24 hours) with 2% lidocaine, 0.04% lidocaine (measured), or culture medium (control), and later evaluated for cell viability by LIVE/DEAD staining. (C) Ten out of 19 matched patients scheduled for knee replacement received a single intra-articular injection of 2% lidocaine approximately 30 minutes prior to the procedure; 9 patients served as control. Osteochondral samples with OA changes were harvested during surgery and analyzed for chondrocyte viability by LIVE/DEAD staining. RESULTS: (A) The synovial LA concentration was significantly lower than the primary concentration injected: average 0.23 mg/mL (0.02%), highest measured 0.37 mg/mL (0.04%). (B) In vitro exposure to a reduced LA concentration had no significant influence on chondrocyte viability in intact cartilage explants (24-hour averages: control, 93%; 0.04% lidocaine, 92%; 2% lidocaine, 79%). (C) Viability of chondrocytes in OA knees was similar between 2% lidocaine injection (85%) and control (80%). CONCLUSIONS: A single intra-articular knee injection of 2% lidocaine did not influence the chondrocyte viability neither in healthy nor in OA cartilage. A fast postinjection reduction of synovial LA concentration (more than 40 times) is the most likely protective mechanism.


Assuntos
Cartilagem Articular , Cromatografia Líquida , Humanos , Injeções Intra-Articulares , Lidocaína , Espectrometria de Massas em Tandem
20.
Appl Physiol Nutr Metab ; 46(4): 299-308, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32758102

RESUMO

Contraction-induced adaptations in skeletal muscles are well characterized in vivo, but the underlying cellular mechanisms are still not completely understood. Cultured human myotubes represent an essential model system for human skeletal muscle that can be modulated ex vivo, but they are quiescent and do not contract unless being stimulated. Stimulation can be achieved by innervation of human myotubes in vitro by co-culturing with embryonic rat spinal cord, or by replacing motor neuron activation by electrical pulse stimulation (EPS). Effects of these two in vitro approaches, innervation and EPS, were characterized with respects to the expression of myosin heavy chains (MyHCs) and metabolism of glucose and oleic acid in cultured human myotubes. Adherent human myotubes were either innervated with rat spinal cord segments or exposed to EPS. The expression pattern of MyHCs was assessed by quantitative polymerase chain reaction, immunoblotting, and immunofluorescence, while the metabolism of glucose and oleic acid were studied using radiolabelled substrates. Innervation and EPS promoted differentiation towards different fiber types in human myotubes. Expression of the slow MyHC-1 isoform was reduced in innervated myotubes, whereas it remained unaltered in EPS-treated cells. Expression of both fast isoforms (MyHC-2A and MyHC-2X) tended to decrease in EPS-treated cells. Both approaches induced a more oxidative phenotype, reflected in increased CO2 production from both glucose and oleic acid. Novelty: Innervation and EPS favour differentiation into different fiber types in human myotubes. Both innervation and EPS promote a metabolically more oxidative phenotype in human myotubes.


Assuntos
Diferenciação Celular , Estimulação Elétrica , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/inervação , Cadeias Pesadas de Miosina/metabolismo , Animais , Células Cultivadas , Glucose/metabolismo , Humanos , Ácido Oleico/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Medula Espinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA