Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
South Med J ; 111(7): 382-388, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29978221

RESUMO

Point of-care ultrasound (POCUS) has become a mainstream bedside tool for clinicians in several specialties and is gaining recognition in hospital medicine. There are many clinical applications in which the inpatient practitioner can use POCUS to improve his or her diagnosis, monitoring, and treatment of patients. POCUS is valuable in many clinical scenarios, including acute renal failure, increasing lower extremity edema, change in inpatient clinical status, and acute dyspnea. The medical literature has demonstrated the ability of nonradiologists to accurately detect conditions, including hydronephrosis; extremes of central venous pressure; deep venous thrombosis; pericardial effusion with tamponade; and several pulmonary pathologic states, including pulmonary edema, pleural effusion, consolidation, and pneumothorax. Further development of POCUS in hospital medicine is highly likely given increased awareness and exposure among medical trainees, a developing literature base, and growing engagement from specialty societies.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Ultrassonografia/métodos , Humanos , Pacientes Internados
2.
Nucleic Acids Res ; 38(13): 4514-26, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20236989

RESUMO

Accurate DNA segregation is essential for genome transmission. Segregation of the prototypical F plasmid requires the centromere-binding protein SopB, the NTPase SopA and the sopC centromere. SopB displays an intriguing range of DNA-binding properties essential for partition; it binds sopC to form a partition complex, which recruits SopA, and it also coats DNA to prevent non-specific SopA-DNA interactions, which inhibits SopA polymerization. To understand the myriad functions of SopB, we determined a series of SopB-DNA crystal structures. SopB does not distort its DNA site and our data suggest that SopB-sopC forms an extended rather than wrapped partition complex with the SopA-interacting domains aligned on one face. SopB is a multidomain protein, which like P1 ParB contains an all-helical DNA-binding domain that is flexibly attached to a compact (beta(3)-alpha)(2) dimer-domain. Unlike P1 ParB, the SopB dimer-domain does not bind DNA. Moreover, SopB contains a unique secondary dimerization motif that bridges between DNA duplexes. Both specific and non-specific SopB-DNA bridging structures were observed. This DNA-linking function suggests a novel mechanism for in trans DNA spreading by SopB, explaining how it might mask DNA to prevent DNA-mediated inhibition of SopA polymerization.


Assuntos
Proteínas de Bactérias/química , Centrômero/química , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Fator F/genética , Sítios de Ligação , Modelos Moleculares , Conformação de Ácido Nucleico , Multimerização Proteica , Estrutura Terciária de Proteína
3.
Science ; 323(5912): 396-401, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19150849

RESUMO

Bacterial multidrug tolerance is largely responsible for the inability of antibiotics to eradicate infections and is caused by a small population of dormant bacteria called persisters. HipA is a critical Escherichia coli persistence factor that is normally neutralized by HipB, a transcription repressor, which also regulates hipBA expression. Here, we report multiple structures of HipA and a HipA-HipB-DNA complex. HipA has a eukaryotic serine/threonine kinase-like fold and can phosphorylate the translation factor EF-Tu, suggesting a persistence mechanism via cell stasis. The HipA-HipB-DNA structure reveals the HipB-operator binding mechanism, approximately 70 degrees DNA bending, and unexpected HipA-DNA contacts. Dimeric HipB interacts with two HipA molecules to inhibit its kinase activity through sequestration and conformational inactivation. Combined, these studies suggest mechanisms for HipA-mediated persistence and its neutralization by HipB.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Tolerância a Medicamentos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo , Cristalização , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Operadoras Genéticas , Óperon , Fator Tu de Elongação de Peptídeos/metabolismo , Fosforilação , Conformação Proteica , Dobramento de Proteína , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
4.
J Am Chem Soc ; 129(26): 8389-95, 2007 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-17567017

RESUMO

Staphylococcus aureus QacR is a multidrug-binding transcription repressor. Crystal structures of multiple QacR-drug complexes reveal that these toxins bind in a large pocket, which is composed of smaller overlapping "minipockets". Stacking, van der Waals, and ionic interactions are common features of binding, whereas hydrogen bonds are limited. Pentamidine, a bivalent aromatic diamidine, interacts with QacR differently as one positively charged benzamidine moiety is neutralized by the dipoles of side-chain and peptide backbone oxygens rather than a formal negative charge from proximal acidic residues. To understand the binding mechanisms of other bivalent benzamidines, we determined the crystal structures of the QacR-DB75 and QacR-DB359 complexes and measured their binding affinities. Although these rigid aromatic diamidines bind with low-micromolar affinities, they do not use single, discrete binding modes. Such promiscuous binding underscores the intrinsic chemical redundancy of the QacR multidrug-binding pocket. Chemical redundancy is likely a hallmark of all multidrug-binding pockets, yet it is utilized by only a subset of drugs, which, for QacR, so far appears to be limited to chemically rigid, bivalent compounds.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Benzamidinas/química , Benzamidinas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/genética , Escherichia , Genes Bacterianos , Modelos Moleculares , Estrutura Molecular , Mutagênese , Ligação Proteica , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA