Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 575(7783): 459-463, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31748725

RESUMO

Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1-6. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7-9. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10-6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.

2.
J Anim Sci ; 82(6): 1818-25, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15217010

RESUMO

Six double-muscled Belgian Blue bulls (initial weight: 345 +/- 16 kg) with cannulas in the rumen and proximal duodenum were used in two juxtaposed 3 x 3 Latin squares to study the effect of a lack of synchronization between energy and N in the rumen on microbial protein synthesis and N metabolism by giving the same diet according to three different feeding patterns. The feed ingredients of the diet were separated into two groups supplying the same amount of fermentable OM (FOM), but characterized by different levels of ruminally degradable N (RDN). The first group primarily provided energy for the ruminal microbes (14.6 g of RDN/kg of FOM), and the second provided N (33.3 g of RDN/kg of FOM). These two groups were fed to the bulls simultaneously or alternately with the aim of creating three different time periods of imbalance (0, 12, or 24 h) between energy and N supplies in the rumen. The introduction of imbalance affected neither microbial-N flow at the duodenum (P = 0.65) nor efficiency of growth (P = 0.69), but decreased (P = 0.016) the NDF degradation in the rumen 12.2% for a 12-h period of imbalance. N retention was not affected by imbalance (P = 0.53) and reached 57.8, 58.5, and 54.7 g/d, respectively, for 0-, 12- and 24-h imbalance. It seems that the introduction of an imbalance of 12 or 24 h between energy and N supplies for the ruminal microbes by altering the feeding pattern of the same diet does not negatively influence microbial protein synthesis or N retention by the animal. Nitrogen recycling in the rumen plays a major role in regulating the amount ofruminally available N and allows for continuous synchronization of N- and energy-yielding substrates for the microorganisms in the rumen. Therefore, a lack of synchronization in the diet between the energy and N supplies for the ruminal microbes is not detrimental to their growth or for the animal as long as the nutrient supply is balanced on a 48-h basis. Thus, these dietary feeding patterns may be used under practical feeding conditions with minimal effect on the performance of ruminant animals.


Assuntos
Proteínas de Bactérias/biossíntese , Bovinos/metabolismo , Duodeno/metabolismo , Metabolismo Energético/fisiologia , Nitrogênio/metabolismo , Rúmen/microbiologia , Ração Animal , Animais , Bovinos/crescimento & desenvolvimento , Fibras na Dieta/metabolismo , Digestão , Duodeno/microbiologia , Ingestão de Energia/fisiologia , Fermentação , Masculino , Nitrogênio/administração & dosagem , Distribuição Aleatória , Rúmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA