Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 16753, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224197

RESUMO

Multi-MeV high-purity proton acceleration by using a hydrogen cluster target irradiated with repetitive, relativistic intensity laser pulses has been demonstrated. Statistical analysis of hundreds of data sets highlights the existence of markedly high energy protons produced from the laser-irradiated clusters with micron-scale diameters. The spatial distribution of the accelerated protons is found to be anisotropic, where the higher energy protons are preferentially accelerated along the laser propagation direction due to the relativistic effect. These features are supported by three-dimensional (3D) particle-in-cell (PIC) simulations, which show that directional, higher energy protons are generated via the anisotropic ambipolar expansion of the micron-scale clusters. The number of protons accelerating along the laser propagation direction is found to be as high as 1.6 [Formula: see text] [Formula: see text] 10[Formula: see text]/MeV/sr/shot with an energy of 2.8 [Formula: see text] MeV, indicating that laser-driven proton acceleration using the micron-scale hydrogen clusters is promising as a compact, repetitive, multi-MeV high-purity proton source for various applications.

2.
Appl Opt ; 60(16): 4993-4999, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143063

RESUMO

Numerical and experimental studies have been performed to evaluate the enhancement of diffraction efficiency of diffraction gratings around B $K$-emission by overcoating lanthanum series layers on conventional metal-coated laminar-type gratings. We propose an optical design method based on the concept of spectral flux given by collection efficiency and diffraction efficiency. A diffraction grating with a small angle of incidence provides an advantage to soft x-ray spectrographs because it collects the emission at a larger solid angle compared to that of conventional grazing incidence diffraction gratings. Numerical calculations indicated that La and ${\rm{La}}{{\rm{F}}_3}$ were promising as overcoating materials on a laminar-type Ni-coated diffraction grating, and we performed an experimental study using ${\rm{La}}{{\rm{F}}_3}$ and La/C overcoatings, considering their producibility and durability. The diffraction efficiencies were measured using a reflectometer at a synchrotron facility. The diffraction efficiencies observed at 183.4 eV were 29.4% and 34.3% at angles of incidence of 85.1° and 84.9° for ${\rm{Ni}}/{\rm{La}}{{\rm{F}}_3}$ and Ni/La/C gratings, respectively.

3.
Phys Rev E ; 102(5-1): 053202, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327116

RESUMO

Relativistic flying forcibly oscillating reflective diffraction gratings are formed by an intense laser pulse (driver) in plasma. The mirror surface is an electron density singularity near the joining area of the wake wave cavity and the bow wave; it moves together with the driver laser pulse and undergoes forced oscillations induced by the field. A counterpropagating weak laser pulse (source) is incident at grazing angles, being efficiently reflected and enriched by harmonics. The reflected spectrum consists of the source pulse base frequency and its harmonics, multiplied by a large factor due to the double Doppler effect.

4.
Opt Lett ; 45(5): 1100-1103, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108780

RESUMO

We experimentally explore the generation of pre-pulses by post-pulses, created through internal reflection in the optical components, by the nonlinear process associated with the B-integral in the laser chain of the petawatt (PW) facility J-KAREN-P. At a large time delay between the main and the post-pulses, we have found that the pre-pulses are not generated from their counterpart post-pulses at an identical time difference before the main pulse, and the temporal shapes of the pre-pulses are greatly distorted asymmetrically. We have also observed that the peak intensities of the pre-pulses are drastically suppressed compared to the expected value at a small time delay. We briefly describe the origins of the pre-pulses generated by the post-pulses and demonstrate the removal of the pre-pulses by switching to optical components with a small wedge angle at our PW laser facility.

5.
Opt Lett ; 43(11): 2595-2598, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856438

RESUMO

We report the generation of 63 J of broadband pulse energies at 0.1 Hz from the J-KAREN-P laser, which is based on an OPCPA/Ti:sapphire hybrid architecture. Pulse compression down to 30 fs indicates a peak power of over 1 PW. High temporal contrast of 1012 prior to the main pulse has been demonstrated with 10 J output energy. High intensities of 1022 W/cm2 on target by focusing a 0.3 PW laser with an f/1.3 off-axis parabolic mirror have been achieved. Fundamental processes of laser matter interaction at over 1022 W/cm2 intensities belong to a new branch of science that will be the principal research task of our infrastructure.

6.
Opt Express ; 25(17): 20486-20501, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041729

RESUMO

J-KAREN-P is a high-power laser facility aiming at the highest beam quality and irradiance for performing state-of-the art experiments at the frontier of modern science. Here we approached the physical limits of the beam quality: diffraction limit of the focal spot and bandwidth limit of the pulse shape, removing the chromatic aberration, angular chirp, wavefront and spectral phase distortions. We performed accurate measurements of the spot and peak fluence after an f/1.3 off-axis parabolic mirror under the full amplification at the power of 0.3 PW attenuated with ten high-quality wedges, resulting in the irradiance of ~1022 W/cm2 and the Strehl ratio of ~0.5.

7.
Opt Lett ; 37(14): 2868-70, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22825161

RESUMO

Using a high-contrast (10(10):1) and high-intensity (10(21) W/cm(2)) laser pulse with the duration of 40 fs from an optical parametric chirped-pulse amplification/Ti:sapphire laser, a 40 MeV proton bunch is obtained, which is a record for laser pulse with energy less than 10 J. The efficiency for generation of protons with kinetic energy above 15 MeV is 0.1%.

8.
Rep Prog Phys ; 75(5): 056401, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22790586

RESUMO

For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of scientific, industrial and medical applications of laser-driven proton or ion sources, some of which have already been established, while the others are yet to be demonstrated. In most applications, the laser-driven ion sources are complementary to the conventional accelerators, exhibiting significantly different properties. Finally, we summarize the paper.


Assuntos
Íons , Lasers , Aceleradores de Partículas , Desenho de Equipamento
9.
Opt Lett ; 37(16): 3363-5, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23381258

RESUMO

We demonstrate the temporal contrast enhancement in a petawatt-class Ti:sapphire chirped-pulse amplification (CPA) laser system. An extra saturable absorber, introduced downstream after a low-gain optical parametric chirped-pulse amplification (OPCPA) preamplifier, has improved the temporal contrast in the system to 1.4×10(12) on the subnanosecond time scale at 70 TW power level. We have achieved 28 J of uncompressed broadband output energy with this system, indicating the potential for reaching peak powers near 600 TW.

10.
Opt Lett ; 36(9): 1614-6, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21540945

RESUMO

The interaction between a 25 TW laser and Xe clusters at a peak intensity of 1 × 10¹9 W/cm² has been investigated. Xe K-shell x rays, whose energies are approximately 30 keV, were clearly observed with a hard x-ray CCD at 3.4 MPa. Moreover, we studied the yield of the Xe K-shell x rays by changing the pulse duration of the laser at a constant laser energy and found that the pulse duration of 40 fs is better than that of 300 fs for generating Xe K-shell x rays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA