Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(7): 1680-1683, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560835

RESUMO

With the help of a theoretical model and finite-difference time-domain (FDTD) simulations based on the hydrodynamic-Maxwell model, we examine the effect of difference-frequency generation (DFG) in an array of L-shaped metal nanoparticles (MNPs) characterized by intrinsic plasmonic nonlinearity. The outcomes of the calculations reveal the spectral interplay between gain and loss in the vicinity of the fundamental frequency of the localized surface plasmon resonances. Subsequently, we identify different array thicknesses and pumping regimes facilitating parametric amplification and spontaneous parametric downconversion. Our results suggest that the parametric amplification regime becomes feasible on a scale of hundreds of nanometers and spontaneous parametric downconversion on the scale of tens of nanometers, opening up new exciting opportunities for developing building blocks of photonic metasurfaces.

2.
Nano Lett ; 23(23): 11006-11012, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038967

RESUMO

Interlayer excitons (IXs) formed at the interface of van der Waals materials possess various novel properties. In parallel development, strain engineering has emerged as an effective means for creating 2D quantum emitters. Exploring the intersection of these two exciting areas, we use MoS2/WSe2 heterostructure as a model system and demonstrate how strain, defects, and layering can be utilized to create defect-bound IXs capable of bright, robust, and tunable quantum light emission in the technologically important near-infrared spectral range. Our work presents defect-bound IXs as a promising platform for pushing the performance of 2D quantum emitters beyond their current limitations.

3.
Nat Mater ; 22(11): 1311-1316, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37592028

RESUMO

Quantum light emitters capable of generating single photons with circular polarization and non-classical statistics could enable non-reciprocal single-photon devices and deterministic spin-photon interfaces for quantum networks. To date, the emission of such chiral quantum light relies on the application of intense external magnetic fields, electrical/optical injection of spin-polarized carriers/excitons or coupling with complex photonic metastructures. Here we report the creation of free-space chiral quantum light emitters via the nanoindentation of monolayer WSe2/NiPS3 heterostructures at zero external magnetic field. These quantum light emitters emit with a high degree of circular polarization (0.89) and single-photon purity (95%), independent of pump laser polarization. Scanning diamond nitrogen-vacancy microscopy and temperature-dependent magneto-photoluminescence studies reveal that the chiral quantum light emission arises from magnetic proximity interactions between localized excitons in the WSe2 monolayer and the out-of-plane magnetization of defects in the antiferromagnetic order of NiPS3, both of which are co-localized by strain fields associated with the nanoscale indentations.

4.
Annu Rev Phys Chem ; 74: 467-492, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36854178

RESUMO

We review our recent quantum stochastic model for spectroscopic lineshapes in the presence of a coevolving and nonstationary background population of excitations. Starting from a field theory description for interacting bosonic excitons, we derive a reduced model whereby optical excitons are coupled to an incoherent background via scattering as mediated by their screened Coulomb coupling. The Heisenberg equations of motion for the optical excitons are then driven by an auxiliary stochastic population variable, which we take to be the solution of an Ornstein-Uhlenbeck process. Here, we present an overview of the theoretical techniques we have developed as applied to predicting coherent nonlinear spectroscopic signals. We show how direct (Coulomb) and exchange coupling to the bath give rise to distinct spectral signatures and discuss mathematical limits on inverting spectral signatures to extract the background density of states.

5.
Nanotechnology ; 34(17)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36693276

RESUMO

We study the effect of degenerate parametric down-conversion (DPDC) in an ensemble of two-level quantum emitters (QEs) coupled via near-field interactions to a single surface plasmon (SP) mode of a nonlinear plasmonic cavity. For this purpose, we develop a quantum driven-dissipative model capturing non-equilibrium dynamics of the system in which incoherently pumped QEs have transition frequency tuned near the second-harmonic response of the SPs. Considering the strong coupling regime, i.e. the SP-QE interaction rate exceeds system dissipation rates, we find a critical SP-QE coupling attributed to the phase transition between normal and lasing steady states. Examining fluctuations above the system's steady states, we predict new elementary excitations, namely, the exciton-plasmon polaritons formed by the two-SP quanta and single-exciton states of QEs. The contribution of two-SP quanta results in the linear scaling of the SP-QE interaction rate with the number of QEs,o, as opposed to theo-scaling known for the Dicke and Tavis-Cummings models. We further examine how SP-QE interaction scaling affects the polariton dispersions and power spectra in the vicinity of the critical coupling. For this purpose, we compare the calculation results assuming a finite ensemble of QEs and the model thermodynamic limit. The calculated power spectra predict an interplay of coherent photon emission by QEs near the second-harmonic frequency and correlated photon-pair emission at the fundamental frequency by the SPs (i.e. the photonic DPDC effect).

7.
J Chem Phys ; 157(5): 054103, 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933213

RESUMO

Spectral line shapes provide a window into the local environment coupled to a quantum transition in the condensed phase. In this paper, we build upon a stochastic model to account for non-stationary background processes produced by broad-band pulsed laser stimulation, as distinguished from those for stationary phonon bath. In particular, we consider the contribution of pair-fluctuations arising from the full bosonic many-body Hamiltonian within a mean-field approximation, treating the coupling to the system as a stochastic noise term. Using the Itô transformation, we consider two limiting cases for our model, which lead to a connection between the observed spectral fluctuations and the spectral density of the environment. In the first case, we consider a Brownian environment and show that this produces spectral dynamics that relax to form dressed excitonic states and recover an Anderson-Kubo-like form for the spectral correlations. In the second case, we assume that the spectrum is Anderson-Kubo like and invert to determine the corresponding background. Using the Jensen inequality, we obtain an upper limit for the spectral density for the background. The results presented here provide the technical tools for applying the stochastic model to a broad range of problems.

8.
Nanoscale Horiz ; 7(3): 267-275, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34908075

RESUMO

Developments in the field of nanoplasmonics have the potential to advance applications from information processing and telecommunications to light-based sensing. Traditionally, nanoscale noble metals such as gold and silver have been used to achieve the targeted enhancements in light-matter interactions that result from the presence of localized surface plasmons (LSPs). However, interest has recently shifted to intrinsically doped semiconductor nanocrystals (NCs) for their ability to display LSP resonances (LSPRs) over a much broader spectral range, including the infrared (IR). Among semiconducting plasmonic NCs, spinel metal oxides (sp-MOs) are an emerging class of materials with distinct advantages in accessing the telecommunications bands in the IR and affording useful environmental stability. Here, we report the plasmonic properties of Fe3O4 sp-MO NCs, known previously only for their magnetic functionality, and demonstrate their ability to modify the light-emission properties of telecom-emitting quantum dots (QDs). We establish the synthetic conditions for tuning sp-MO NC size, composition and doping characteristics, resulting in unprecedented tunability of electronic behavior and plasmonic response over 450 nm. In particular, with diameter-dependent variations in free-electron concentration across the Fe3O4 NC series, we introduce a strong NC size dependency onto the optical response. In addition, our observation of plasmonics-enhanced decay rates from telecom-emitting QDs reveals Purcell enhancement factors for simple plasmonic-spacer-emitter sandwich structures up to 51-fold, which are comparable to values achieved previously only for emitters in the visible range coupled with conventional noble metal NCs.

9.
ACS Nano ; 15(6): 10406-10414, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34061507

RESUMO

Solid-state single-photon sources are essential building blocks for quantum photonics and quantum information technologies. This study demonstrates promising single-photon emission from quantum defects generated in single-wall carbon nanotubes (SWCNTs) by covalent reaction with guanine nucleotides in their single-stranded DNA coatings. Low-temperature photoluminescence spectroscopy and photon-correlation measurements on individual guanine-functionalized SWCNTs (GF-SWCNTs) indicate that multiple, closely spaced guanine defect sites within a single ssDNA strand collectively form an exciton trapping potential that supports a localized quantum state capable of room-temperature single-photon emission. In addition, exciton traps from adjacent ssDNA strands are weakly coupled to give cross-correlations between their separate photon emissions. Theoretical modeling identifies coupling mechanism as a capture of band-edge excitons. Because the spatial pattern of nanotube functionalization sites can be readily controlled by selecting ssDNA base sequences, GF-SWCNTs should become a versatile family of quantum light emitters with engineered properties.


Assuntos
Nanotubos de Carbono , DNA , DNA de Cadeia Simples , Óptica e Fotônica , Fótons
10.
Nano Lett ; 21(7): 3271-3279, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33755481

RESUMO

This report of the reddest emitting indium phosphide quantum dots (InP QDs) to date demonstrates tunable, near-infrared (NIR) photoluminescence (PL) as well as PL multiplexing in the first optical tissue window while avoiding toxic constituents. This synthesis overcomes the InP "growth bottleneck" and extends the emission peak of InP QDs deeper into the first optical tissue window using an inverted QD heterostructure, specifically ZnSe/InP/ZnS core/shell/shell nanoparticles. The QDs exhibit InP shell thickness-dependent tunable emission with peaks ranging from 515-845 nm. The high absorptivity of InP yields effective photoexcitation of the QDs with UV, visible, and NIR wavelengths. These nanoparticles extend the range of tunable direct-bandgap emission from InP-based nanostructures, effectively overcoming a synthetic barrier that has prevented InP-based QDs from reaching their full potential as NIR imaging agents. Multiplexed lymph node imaging in a mouse model demonstrates the potential of the NIR-emitting InP particles for in vivo imaging.


Assuntos
Fosfinas , Pontos Quânticos , Animais , Índio , Camundongos , Compostos de Zinco
11.
J Chem Phys ; 154(8): 084703, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33639729

RESUMO

We report on a theoretical study of second-harmonic generation (SHG) in plasmonic nanostructures interacting with two-level quantum emitters (QEs) under incoherent energy pump. We generalize the driven-dissipative Tavis-Cummings model by introducing the anharmonic surface plasmon-polariton (SPP) mode coupled to QEs and examine physical properties of corresponding SPP-QE polariton states. Our calculations of the SHG efficiency for strong QE-SPP coupling demonstrate orders of magnitude enhancement facilitated by the polariton gain. We further discuss time-domain numerical simulations of SHG in a square lattice comprising Ag nanopillars coupled to QEs utilizing a fully vectorial nonperturbative nonlinear hydrodynamic model for conduction electrons coupled to Maxwell-Bloch equations for QEs. The simulations support the idea of gain enhanced SHG and show orders of magnitude increase in the SHG efficiency as the QEs are tuned in resonance with the lattice plasmon mode and brought above the population inversion threshold by incoherent pumping. By varying pump frequency and tuning QEs to a localized plasmon mode, we demonstrate further enhancement of the SHG efficiency facilitated by strong local electric fields. The incident light polarization dependence of the SHG is examined and related to the symmetries of participating plasmon modes.

12.
ACS Nano ; 15(1): 575-587, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33381968

RESUMO

We synthesized PbS/CdS core/shell quantum dots (QDs) to have functional single-emitter properties for room-temperature, solid-state operation in the telecom O and S bands. Two shell-growth methods-cation exchange and successive ionic layer adsorption and reaction (SILAR)-were employed to prepare QD heterostructures with shells of 2-16 monolayers. PbS/CdS QDs were sufficiently bright and stable to resolve photoluminescence (PL) spectra representing both bands from single nanocrystals using standard detection methods, and for a QD emitting in the O-band a second-order correlation function showed strong photon antibunching, important steps toward demonstrating the utility of lead chalcogenide QDs as single-photon emitters (SPEs). Irrespective of type, few telecom-SPEs exist that are capable of such room-temperature operation. Access to single-QD spectra enabled a direct assessment of spectral line width, which was ∼70-90 meV compared to much broader ensemble spectra (∼300 meV). We show inhomogeneous broadening results from dispersity in PbS core sizes that increases dramatically with extended cation exchange. Quantum yields (QYs) are negatively impacted at thick shells (>6 monolayers) and, especially, by SILAR-growth conditions. Time-resolved PL measurements revealed that, with SILAR, initially single-exponential PL-decays transition to biexponential, with opening of nonradiative carrier-recombination channels. Radiative decay times are, overall, longer for core/shell QDs compared to PbS cores, which we demonstrate can be partially attributed to some core/shell sizes occupying a quasi-type II electron-hole localization regime. Finally, we demonstrate that shell engineering and the use of lower laser-excitation powers can afford significantly suppressed blinking and photobleaching. However, dependence on shell thickness comes at a cost of less-than-optimal brightness, with implications for both materials and experimental design.

13.
J Chem Phys ; 152(7): 071101, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087627

RESUMO

Quantum entangled photons provide a sensitive probe of many-body interactions and offer a unique experimental portal for quantifying many-body correlations in a material system. In this paper, we present a theoretical demonstration of how photon-photon entanglement can be generated via interactions between coupled qubits. Here, we develop a model for the scattering of an entangled pair of photons from a molecular dimer. We develop a diagrammatic theory for the scattering matrix and show that one can correlate the von Neumann entropy of the outgoing bi-photon wave function with exciton exchange and repulsion interactions. We conclude by discussing possible experimental scenarios for realizing these ideas.

14.
Phys Rev Lett ; 123(12): 123605, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31633973

RESUMO

We study photon emission by an ensemble of two-level systems, with strong inhomogeneous broadening and coupled to a cavity mode whose frequency has linear time dependence. The analysis shows that, regardless of the distribution of energy level splittings, a sharp phase transition occurs between the weak and strong cooperative emission phases near a critical photonic frequency sweeping rate. The associated scaling exponent is determined. We suggest that this phase transition can be observed in an ensemble of negatively charged NV^{-} centers in diamond interacting with a microwave half-wavelength cavity mode even in the regime of weak coupling and at strong disorder of two-level splittings.

15.
J Chem Phys ; 150(18): 184106, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091941

RESUMO

Recent theories and experiments have explored the use of entangled photons as a spectroscopic probe of physical systems. We describe here a theoretical description for entropy production in the scattering of an entangled biphoton Fock state within an optical cavity. We develop this using perturbation theory by expanding the biphoton scattering matrix in terms of single-photon terms in which we introduce the photon-photon interaction via a complex coupling constant, ξ. We show that the von Neumann entropy provides a concise measure of this interaction. We then develop a microscopic model and show that in the limit of fast fluctuations, the entanglement entropy vanishes, whereas in the limit of slow fluctuations, the entanglement entropy depends on the magnitude of the fluctuations and reaches a maximum. Our result suggests that experiments measuring biphoton entanglement give microscopic information pertaining to exciton-exciton correlations.

16.
Nanoscale ; 11(18): 9125-9132, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31032824

RESUMO

Defect states introduced to single wall carbon nanotubes (SWCNTs) by covalent functionalization give rise to novel photophysics and are showing promise as sources of room-temperature quantum emission of interest for quantum information technologies. Evaluation of their ultimate potential for such needs requires a knowledge of intrinsic dynamic and coherence behaviors. Here we probe population relaxation and dephasing time (T1 and T2, respectively) of defect states following deposition of functionalized SWCNTs on polystyrene substrates that are subjected to an isopropanol rinse to remove surfactant. Low-temperature (4 K) photo-luminescence linewidths (∼100 µeV) following surfactant removal are a factor of ten narrower than those for unrinsed SWCNTs. Measured recombination lifetimes, on the order of 1.5 ns, compare well with those estimated from DFT calculations, indicating that the intrinsic radiatively-limited lifetime is approached following this sample treatment. Dephasing times evaluated directly through an interferometric approach compare closely to those established by photoluminescence linewidths. Dephasing times as high as 12 ps are found; a factor of up to 6 times greater than those evaluated for band-edge exciton states. Such enhancement of dephasing and photoluminescence lifetime behavior is a direct consequence of exciton localization at the SWCNT defect sites.

17.
Front Chem ; 6: 567, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515380

RESUMO

The large bulk bandgap (1.35 eV) and Bohr radius (~10 nm) of InP semiconductor nanocrystals provides bandgap tunability over a wide spectral range, providing superior color tuning compared to that of CdSe quantum dots. In this paper, the dependence of the bandgap, photoluminescence emission, and exciton radiative lifetime of core/shell quantum dot heterostructures has been investigated using colloidal InP core nanocrystals with multiple diameters (1.5, 2.5, and 3.7 nm). The shell thickness and composition dependence of the bandgap for type-I and type-II heterostructures was observed by coating the InP core with ZnS, ZnSe, CdS, or CdSe through one to ten iterations of a successive ion layer adsorption and reaction (SILAR)-based shell deposition. The empirical results are compared to bandgap energy predictions made with effective mass modeling. Photoluminescence emission colors have been successfully tuned throughout the visible and into the near infrared (NIR) wavelength ranges for type-I and type-II heterostructures, respectively. Based on sizing data from transmission electron microscopy (TEM), it is observed that at the same particle diameter, average radiative lifetimes can differ as much as 20-fold across different shell compositions due to the relative positions of valence and conduction bands. In this direct comparison of InP/ZnS, InP/ZnSe, InP/CdS, and InP/CdSe core/shell heterostructures, we clearly delineate the impact of core size, shell composition, and shell thickness on the resulting optical properties. Specifically, Zn-based shells yield type-I structures that are color tuned through core size, while the Cd-based shells yield type-II particles that emit in the NIR regardless of the starting core size if several layers of CdS(e) have been successfully deposited. Particles with thicker CdS(e) shells exhibit longer photoluminescence lifetimes, while little shell-thickness dependence is observed for the Zn-based shells. Taken together, these InP-based heterostructures demonstrate the extent to which we are able to precisely tailor the material properties of core/shell particles using core/shell dimensions and composition as variables.

18.
Nat Commun ; 9(1): 637, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434198

RESUMO

Electronic interactions in low-dimensional nanomaterial heterostructures can lead to novel optical responses arising from exciton delocalization over the constituent materials. Similar phenomena have been suggested to arise between closely interacting semiconducting carbon nanotubes of identical structure. Such behavior in carbon nanotubes has potential to generate new exciton physics, impact exciton transport mechanisms in nanotube networks, and place nanotubes as one-dimensional models for such behaviors in systems of higher dimensionality. Here we use resonance Raman spectroscopy to probe intertube interactions in (6,5) chirality-enriched bundles. Raman excitation profiles for the radial breathing mode and G-mode display a previously unobserved sharp resonance feature. We show the feature is evidence for creation of intertube excitons and is identified as a Fano resonance arising from the interaction between intratube and intertube excitons. The universality of the model suggests that similar Raman excitation profile features may be observed for interlayer exciton resonances in 2D multilayered systems.

19.
J Am Chem Soc ; 139(32): 11081-11088, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28719199

RESUMO

Toward a truly photostable PbSe quantum dot (QD), we apply the thick-shell or "giant" QD structural motif to this notoriously environmentally sensitive nanocrystal system. Namely, using a sequential application of two shell-growth techniques-partial-cation exchange and successive ionic layer adsorption and reaction (SILAR)-we are able to overcoat the PbSe QDs with sufficiently thick CdSe shells to impart new single-QD-level photostability, as evidenced by suppression of both photobleaching and blinking behavior. We further reveal that the crystal structure of the CdSe shell (cubic zinc-blende or hexagonal wurtzite) plays a key role in determining the photoluminescence properties of these giant QDs, with only cubic nanocrystals sufficiently bright and stable to be observed as single emitters. Moreover, we demonstrate that crystal structure and particle shape (cubic, spherical, or tetrapodal) and, thereby, emission properties can be synthetically tuned by either withholding or including the coordinating ligand, trioctylphosphine, in the SILAR component of the shell-growth process.

20.
J Phys Chem A ; 120(19): 3109-16, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-26905014

RESUMO

We study the collective, superradiant behavior in the system of emitter-dressed Ag nanorods. Starting from the Drude model for the plasmon oscillations, we arrive at a semiempirical Hamiltonian describing the coupling between quantized surface plasmon modes and the quantum emitters that can be controlled by manipulating their geometry, spacing, and orientation. Further, identifying the lowest polariton mode as SP-states dressed by excitons in the vicinity of k = 0, we examine conditions allowing for the polariton quantum-phase transition. Though the system is formally a 1D array, we show that the polariton states of interest can undergo a quantum-phase transition to form a Bose condensate at finite temperatures for physically accessible parameter ranges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA