Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(22)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35263728

RESUMO

Excitation, detection, and control of coherent THz magnetic excitation in antiferromagnets are challenging problems that can be addressed using ever shorter laser pulses. We study experimentally excitation of magnetic dynamics at THz frequencies in an antiferromagnetic insulator CoF2by sub-10 fs laser pulses. Time-resolved pump-probe polarimetric measurements at different temperatures and probe polarizations reveal laser-induced transient circular birefringence oscillating at the frequency of 7.45 THz and present below the Néel temperature. The THz oscillations of circular birefringence are ascribed to oscillations of the magnetic moments of Co2+ions induced by the laser-driven coherentEgphonon mode via the THz analogue of the transverse piezomagnetic effect. It is also shown that the same pulse launches coherent oscillations of the magnetic linear birefringence at the frequency of 3.4 THz corresponding to the two-magnon mode. Analysis of the probe polarization dependence of the transient magnetic linear birefringence at the frequency of the two-magnon mode enables identifying its symmetry.

2.
Phys Rev Lett ; 125(15): 157201, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095611

RESUMO

The microscopic origin of ultrafast modification of the ratio between the symmetric (J) and antisymmetric (D) exchange interaction in antiferromagnetic iron oxides is revealed, using femtosecond laser excitation as a pump and terahertz emission spectroscopy as a probe. By tuning the photon energy of the laser pump pulse we show that the effect of light on the D/J ratio in two archetypical iron oxides FeBO_{3} and ErFeO_{3} is maximized when the photon energy is in resonance with a spin and parity forbidden d-d transition between the crystal-field split states of Fe^{3+} ions. The experimental findings are supported by a multielectron model, which accounts for the resonant absorption of photons by Fe^{3+} ions. Our results reveal the importance of the parity and spin-change forbidden, and therefore often underestimated, d-d transitions in ultrafast optical control of magnetism.

3.
Phys Rev Lett ; 123(15): 157202, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702317

RESUMO

A nearly single cycle intense terahertz (THz) pulse with peak electric and magnetic fields of 0.5 MV/cm and 0.16 T, respectively, excites both modes of spin resonances in the weak antiferromagnet FeBO_{3}. The high frequency quasiantiferromagnetic mode is excited resonantly and its amplitude scales linearly with the strength of the THz magnetic field, whereas the low frequency quasiferromagnetic mode is excited via a nonlinear mechanism that scales quadratically with the strength of the THz electric field and can be regarded as a THz inverse Cotton-Mouton effect. THz optomagnetism is shown to be more energy efficient than similar effects reported previously for the near-infrared spectral range.

4.
J Phys Condens Matter ; 29(22): 224003, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28474601

RESUMO

Excitation of antiferromagnetic HoFeO3 with a single 80 fs laser pulse triggers a first-order spin-reorientation phase transition. In the ultrafast kinetics of the transition one can distinguish the processes of impulsive excitation of spin precession, nucleation of the new domain and growth of the nuclei. The orientation of the spins in the nuclei is defined by the phase of the laser-induced coherent spin precession. The growth of the nuclei is further promoted by heating induced by the laser excitation. Hereby we demonstrate that in HoFeO3 coherent control of the spin precession allows an effective control of the route of the heat-induced first-order magnetic phase transition. The theoretical description of the excitation of the spin precession by linearly-polarized ultrashort laser pulses is developed with the sigma model. The analysis showed high sensitivity of the excited dynamics to the initial spin orientations with respect to the crystallographic axes of the material.

5.
J Phys Condens Matter ; 29(16): 164004, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28323634

RESUMO

Light propagation effects can strongly influence the excitation and the detection of laser-induced magnetization dynamics. We investigated experimentally and analytically the effects of crystallographic linear birefringence on the excitation and detection of ultrafast magnetization dynamics in the rare-earth orthoferrites (Sm0.5Pr0.5)FeO3 and (Sm0.55Tb0.45)FeO3, which possess weak and strong linear birefringence, respectively. Our finding is that the effect of linear birefringence on the result of a magneto-optical pump-probe experiment strongly depends on the mechanism of excitation. When magnetization dynamics, probed by means of the Faraday effect, is excited via a rapid, heat-induced phase transition, the measured rotation of the probe pulse polarization is strongly suppressed due to the birefringence. This contrasts with the situation for magnetization dynamics induced by the ultrafast inverse Faraday effect, where the corresponding probe polarization rotation values were larger in the orthoferrite with strong linear birefringence. We show that this striking difference results from an interplay between the polarization transformations experienced by pump and probe pulses in the birefringent medium.

6.
Phys Rev Lett ; 118(1): 017205, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28106410

RESUMO

We show that femtosecond laser pulse excitation of the orthoferrite ErFeO_{3} triggers pico- and subpicosecond dynamics of magnetic and electric dipoles associated with the low energy electronic states of the Er^{3+} ions. These dynamics are readily revealed by using polarization sensitive terahertz emission spectroscopy. It is shown that by changing the polarization of the femtosecond laser pulse one can excite either electric dipole-active or magnetic dipole-active transitions between the Kramers doublets of the ^{4}I_{15/2} ground state of the Er^{3+} (4f^{11}) ions. These observations serve as a proof of principle of polarization-selective control of both electric and magnetic degrees of freedom at terahertz frequencies, opening up new vistas for optical manipulation of magnetoelectric materials.

7.
J Phys Condens Matter ; 29(2): 025808, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27841995

RESUMO

A group of recently synthesized orthorhombic Pnma crystals PbMBO4 (M = Cr, Mn, Fe) demonstrates a number of unusual structural and magnetic properties. We report on polarized Raman scattering study of the lattice and magnetic dynamics in single crystals of an antiferromagnet PbFeBO4 below and above [Formula: see text] K. Polarization properties of the observed magnetic excitations below T N as well as intense quasi-elastic scattering support the quasi-one-dimensional character of the magnetic structure of PbFeBO4. Frequency overlapping of magnetic excitations and low-frequency phonons in the range of 90-200 cm-1 leads to pronounced asymmetric anomalies thus confirming intrinsic coupling of magnetic and lattice subsystems. This conclusion is also supported by observation of anomalous temperature behaviour of higher frequency phonons in the vicinity of T N. Experimental investigations are supported by relevant magnetic symmetry analysis which allows us to explain previously observed anomalous results.

8.
Sci Rep ; 6: 38796, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941842

RESUMO

In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF3 single crystals at the cobalt M2,3-edge at FERMI FEL (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.

9.
Phys Rev Lett ; 116(9): 097401, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991201

RESUMO

Excitation of the collinear compensated antiferromagnet DyFeO_{3} with a single 60 fs laser pulse triggers a phase transition across the Morin point into a noncollinear spin state with a net magnetization. Time-resolved imaging of the magnetization dynamics of this process reveals that the pulse first excites the spin oscillations upon damping of which the noncollinear spin state emerges. The sign of the photoinduced magnetization is defined by the relative orientation of the pump polarization and the direction of the antiferromagnetic vector in the initial collinear spin state.

10.
Nat Commun ; 7: 10645, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847766

RESUMO

The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridging the quantum and classical worlds. This monumental challenge has so far only been achieved for systems close to their thermodynamical equilibrium. Here we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter in the Heisenberg antiferromagnet KNiF3 triggered by the impulsive optical generation of spin excitations with the shortest possible nanometre wavelength and femtosecond period. Our magneto-optical pump-probe experiments also demonstrate the coherent manipulation of the phase and amplitude of these femtosecond nanomagnons, whose frequencies are defined by the exchange energy. These findings open up opportunities for fundamental research on the role of short-wavelength spin excitations in magnetism and strongly correlated materials; they also suggest that nanospintronics and nanomagnonics can employ coherently controllable spin waves with frequencies in the 20 THz domain.

11.
Nat Commun ; 6: 8190, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26373688

RESUMO

Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 10(3) Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm(-2) acts as a pulsed effective magnetic field of 0.01 Tesla.

12.
Phys Rev Lett ; 114(24): 247210, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26197010

RESUMO

Magnetic control of the crystal chirality was announced by Saito et al. [Phys. Rev. Lett. 101, 117402 (2008)] on the ground of experiments in CuB(2)O(4). This claim has raised a sharp dispute in the literature because it seemed to contradict the fundamental symmetry principles. We settle this dispute on the basis of a high-resolution optical spectroscopy study of excitonic transitions in CuB(2)O(4). We find that a large sublattice-sensitive antiferromagnetic linear dichroism (LD) emerges at the Néel temperature T(N)=21 K and show how it could simulate a "magnetic-field control of the crystal chirality." We prove that the discovered LD is related microscopically to the magnetic Davydov splitting. This LD is highly sensitive to subtle changes in the spin subsystems, which allowed us to observe a splitting of the phase transition into an incommensurate magnetic phase into two transitions (T(1)(*)=8.5 and T(2)(*)=7.9 K) and to suggest elliptical spiral structures below T(1)(*), instead of a simple circular helix proposed earlier.

13.
Phys Rev Lett ; 110(11): 116402, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166558

RESUMO

The magneto-Stark effect of excitons is demonstrated to be an efficient source of optical nonlinearity in hexagonal ZnO. Strong resonant second harmonic generation signals induced by an external magnetic field are observed in the spectral range of 2s and 2p excitons. The microscopic theoretical analysis shows that for excitons with a finite wave vector, exciton states of opposite parity are mixed by an effective odd parity electric field induced by the magnetic field despite its even parity. The field, spectral, and polarization dependencies of the second harmonic generation intensity validate the proposed mechanism. The observed phenomenon is not limited to a certain symmetry class and therefore must be effective in other semiconductors.

14.
Phys Rev Lett ; 108(15): 157601, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22587282

RESUMO

Time-resolved magneto-optical imaging of laser-excited rare-earth orthoferrite (SmPr)FeO3 demonstrates that a single 60 fs circularly polarized laser pulse is capable of creating a magnetic domain on a picosecond time scale with a magnetization direction determined by the helicity of light. Depending on the light intensity and sample temperature, pulses of the same helicity can create domains with opposite magnetizations. We argue that this phenomenon relies on a twofold effect of light which (i) instantaneously excites coherent low-amplitude spin precession and (ii) triggers a spin reorientation phase transition. The former dynamically breaks the equivalence between two otherwise degenerate states with opposite magnetizations in the high-temperature phase and thus controls the route of the phase transition.

15.
Phys Rev Lett ; 103(5): 057203, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19792530

RESUMO

Spectroscopy of the centrosymmetric magnetic semiconductors EuTe and EuSe reveals spin-induced optical second harmonic generation (SHG) in the band gap vicinity at 2.1-2.4 eV. The magnetic field and temperature dependence demonstrates that the SHG arises from the bulk of the materials due to a novel type of nonlinear optical susceptibility caused by the magnetic dipole contribution combined with spontaneous or induced magnetization. This spin-induced susceptibility opens access to a wide class of centrosymmetric systems by harmonics generation spectroscopy.

16.
J Phys Condens Matter ; 21(44): 446004, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21832477

RESUMO

Element-specific imaging of magnetic domains in a ferromagnet/antiferromagnet heterostructure consisting of Co/SmFeO(3) has been performed in the vicinity of the spin-reorientation phase transition in SmFeO(3) using a photoemission electron microscope. Evidence is shown that a 90° in-plane spin-reorientation in the antiferromagnetic SmFeO(3) triggers a similar reorientation of spins of the ferromagnetic Co layer on top of it. The possibility of triggering the spin-reorientation with the help of laser-excitation is demonstrated.

17.
Phys Rev Lett ; 99(16): 167205, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17995288

RESUMO

Polarization-dependent excitation of coherent spin precession by 150 fs linearly polarized laser pulses is observed in the easy-plane antiferromagnet FeBO3. We show that the mechanism of excitation is impulsive stimulated Raman scattering. This process is shown to be determined not only by the magneto-optical constants of the material, but also by the properties of the spin precession itself. Though carrying no angular momentum, the linearly polarized laser pulses act on the spins as effective fields that can be considered as an ultrafast inverse Cotton-Mouton effect.

18.
Phys Rev Lett ; 98(4): 047403, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17358811

RESUMO

We demonstrate that optical pumping by circularly polarized light at the charge-transfer transition can induce spin and orbital polarizations in the strongly correlated Mott insulators R(2)CuO(4) (R=Pr, Nd, Sm) providing a means of ultrafast nonlinear manipulation of spin states on time scales of less than 150 fs. We propose a model which includes both orbital- and spin-related processes possessing different spectral and temporal properties. This allows us to model the optical response of antiferromagnetic Mott insulators to circularly polarized light and estimate the spin relaxation time as tau(s) approximately 30-50 fs.

19.
Phys Rev Lett ; 96(11): 117211, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16605867

RESUMO

Basically different mechanisms of optical second harmonic generation (SHG) in semiconductors, induced by an external magnetic field H, have been identified experimentally by studying the diluted magnetic semiconductor (Cd,Mn)Te. For paramagnetic (Cd,Mn)Te the SHG response is governed by spin quantization of electronic states, in contrast with diamagnetic CdTe with its dominating orbital quantization. The mechanisms can be identified by the distinct magnetic field dependence of the SHG intensity which scales with the spin splitting in the paramagnetic case as compared to the H2 dependence observed for the diamagnetic case.

20.
Phys Rev Lett ; 94(15): 157404, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15904188

RESUMO

We show that application of a magnetic field induces optical second-harmonic generation (SHG) in GaAs. This phenomenon arises from field-induced symmetry breaking causing new optical nonlinearities. A series of narrow SHG lines is observed in the spectral range from 1.52 to 1.77 eV that we attribute to Landau-level quantization of the band energy spectrum. The rotational anisotropy of the SHG signal distinctly differs from that of the electric-dipole approximation. Model calculations reveal that nonlinear magneto-optical spatial dispersion that comes together with the electric-dipole term is the dominant mechanism for this nonlinearity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA