Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
ACS Appl Mater Interfaces ; 16(23): 29657-29671, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38815127

RESUMO

The growing number of acute drug abuse overdoses demands the development of innovative detoxification strategies for emergency purposes. In this study, an innovative approach for the application of porous Zr-based metal-organic frameworks for the treatment of acute overdoses of popular drugs of abuse including amphetamine, methamphetamine, cocaine, and MDMA is presented. A comprehensive approach determining the efficacy and the kinetics of drug removal, considering dosage, adsorption time, and adsorption mechanisms, was tested and corroborated with density functional theory (DFT) modeling. The experimental results showed high removal efficiency reaching up to 90% in the case of the application of the NU-1000 metal-organic framework. The difference Raman spectroscopy method presented in this study corroborated with DFT-based vibrational analysis allows the detection of drug adsorbed in the MOF framework even with as low a concentration as 5 mg/g. Additionally, the drug adsorption mechanisms were modeled with DFT, showing the π-π stacking in a vast majority of considered cases. The performance and influence on the living organisms were evaluated throughout the in vitro and in vivo experiments, indicating that Zr-based MOFs could serve as efficient, organic, safe drug adsorbents.


Assuntos
Estruturas Metalorgânicas , Zircônio , Estruturas Metalorgânicas/química , Adsorção , Zircônio/química , Teoria da Densidade Funcional , Animais , Porosidade , Metanfetamina/química
2.
Ultrason Sonochem ; 95: 106377, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36966658

RESUMO

In this study, a sonochemical route for the preparation of a new Hf-MIL-140A metal-organic framework from a mixture of UiO-66/MIL-140A is presented. The sonochemical synthesis route not only allows the phase-pure MIL-140A structure to be obtained but also induces structural defects in the MIL-140A structure. The synergic effect between the sonochemical irradiation and the presence of a highly acidic environment results in the generation of slit-like defects in the crystal structure, which increases specific surface area and pore volume. The BET-specific surface area in the case of sonochemically derived Zr-MIL-140A reaches 653.3 m2/g, which is 1.5 times higher than that obtained during conventional synthesis. The developed Hf-MIL-140A structure is isostructural to Zr-MIL-140A, which was confirmed by synchrotron X-ray powder diffraction (SR-XRD) and by continuous rotation electron diffraction (cRED) analysis. The obtained MOF materials have high thermal and chemical stability, which makes them promising candidates for applications such as gas adsorption, radioactive waste removal, catalysis, and drug delivery.

3.
ACS Appl Mater Interfaces ; 14(25): 28615-28627, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35700479

RESUMO

In this study, we present a complementary approach for obtaining an effective drug, based on acriflavine (ACF) and zirconium-based metal-organic frameworks (MOFs), against SARS-CoV-2. The experimental results showed that acriflavine inhibits the interaction between viral receptor-binding domain (RBD) of spike protein and angiotensin converting enzyme-2 (ACE2) host receptor driving viral cell entry. The prepared ACF@MOF composites exhibited low (MOF-808 and UiO-66) and high (UiO-67 and NU-1000) ACF loadings. The drug release profiles from prepared composites showed different release kinetics depending on the local pore environment. The long-term ACF release with the effective antiviral ACF concentration was observed for all studied ACF@MOF composites. The density functional theory (DFT) calculations allowed us to determine that π-π stacking together with electrostatic interaction plays an important role in acriflavine adsorption and release from ACF@MOF composites. The molecular docking results have shown that acriflavine interacts with several possible binding sites within the RBD and binding site at the RBD/ACE2 interface. The cytotoxicity and ecotoxicity results have confirmed that the prepared ACF@MOF composites may be considered potentially safe for living organisms. The complementary experimental and theoretical results presented in this study have confirmed that the ACF@MOF composites may be considered a potential candidate for the COVID-19 treatment, which makes them good candidates for clinical trials.


Assuntos
Tratamento Farmacológico da COVID-19 , Estruturas Metalorgânicas , Acriflavina/farmacologia , Enzima de Conversão de Angiotensina 2 , Humanos , Simulação de Acoplamento Molecular , Ácidos Ftálicos , Ligação Proteica , SARS-CoV-2 , Zircônio/química
4.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200976

RESUMO

In this article, the results of computational structural studies on Al-containing zeolites, via periodic DFT + D modelling and FDM (Finite Difference Method) to solve the Schrödinger equation (FDMNES) for XAS simulations, corroborated by EXAFS (Extended X-ray Absorption Fine Structure) spectroscopy and PXRD (powder X-ray diffractometry), are presented. The applicability of Radial Distribution Function (RDF) to screen out the postulated zeolite structure is also discussed. The structural conclusions are further verified by HR-TEM imaging.

5.
Nanoscale ; 13(22): 10152-10166, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34075933

RESUMO

The aim of this work was to investigate how chemical functionalization affects the electronic properties of multi-walled carbon nanotubes, altering the electrophoretic deposition process: a method of choice for the fabrication of high quality, all-carbon nanotube (CNT) layers. Wet chemistry methods were applied to modify the surfaces of CNTs by insertion of various oxygen- and nitrogen-containing groups. Transmission electron microscopy revealed no significant changes in the material morphology, while X-ray photoelectron spectroscopy and Raman spectroscopy showed that changes in the chemical composition did not translate to the changes in the structure. Molecularly modelled optimized surface functional group geometries and electron density distributions allowed the calculation of the dipole moments (-COOH = 0.77; -OH = 1.65; -CON(CH3CH2)2 = 3.33; -CONH2 = 2.00; -NH2 = 0.78). Due to their polarity, the introduction of surface functional groups resulted in significant modifications of the electronic properties of CNTs, as elucidated by work function measurements via the Kelvin method and ultraviolet photoelectron spectroscopy. The work function changed from 4.6 eV (raw CNTs) to 4.94 eV for the -OH functionalized CNTs and 4.3 eV for the CNTs functionalized with -CON(CH3CH2), and was inversely proportional to the dipole moment values. Finally, using CNT dispersions, electrophoretic deposition was conducted, allowing the correlation of the work function of CNTs and the measured electrophoretic current with the impact on the deposits' qualities. Thus, a rational background for the development of carbon-based biomaterials was provided.

6.
Phys Chem Chem Phys ; 23(4): 2981-2990, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480931

RESUMO

In this article the results of statistical MC modelling corroborated by the FT-IR spectroscopy and gravimetric adsorption studies of low aliphatic hydrocarbons in ZSM-5 (Si/Al = 28 or silicalite) are presented. The extension of the existing Dubbeldam's forcefield towards inclusion of the finite aluminium-containing zeolites is proposed and its applicability is verified experimentally for the sorption of linear and branched hydrocarbons. The FT-IR spectroscopy applicability to follow the kinetics of small hydrocarbon adsorption has been successfully verified by the application of the Crank solution for diffusion to spectroscopy derived results.

7.
J Chem Phys ; 150(24): 244704, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255092

RESUMO

The temperature dependent dehydrogenation of naphthalene on Ni(111) has been investigated using vibrational sum-frequency generation spectroscopy, X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory with the aim of discerning the reaction mechanism and the intermediates on the surface. At 110 K, multiple layers of naphthalene adsorb on Ni(111); the first layer is a flat lying chemisorbed monolayer, whereas the next layer(s) consist of physisorbed naphthalene. The aromaticity of the carbon rings in the first layer is reduced due to bonding to the surface Ni-atoms. Heating at 200 K causes desorption of the multilayers. At 360 K, the chemisorbed naphthalene monolayer starts dehydrogenating and the geometry of the molecules changes as the dehydrogenated carbon atoms coordinate to the nickel surface; thus, the molecule tilts with respect to the surface, recovering some of its original aromaticity. This effect peaks at 400 K and coincides with hydrogen desorption. Increasing the temperature leads to further dehydrogenation and production of H2 gas, as well as the formation of carbidic and graphitic surface carbon.

8.
J Phys Condens Matter ; 31(40): 404001, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226702

RESUMO

DFT/D + U and density functional based tight binding (DFTB) molecular modeling was used to investigate the role of the structural, electronic and optical properties of reduced graphene oxide surface (r-GO), hybridized with hydrated TiO2 moieties of various size, ranging from small molecular Ti2O4 clusters into extended Ti43O86 rutile type nanocrystals of ~5 nm diameter. The calculated adhesion energies, varying from -5.048 eV (r-GO|Ti2O4), -12.159 eV (r-GO|Ti5O10), -18.499 eV (r-GO|Ti15O30) to -42.484 eV (r-GO|Ti43O86), indicate high stability of these composites. It was shown that electronic interactions at the r-GO|(1 1 0)TiO2 interface give rise to net charge flow from the r-GO substrate towards the TiO2 moieties, analyzed in terms of the partial charge density 3D plots and an interfacial dipole moment formation. The DOS structure of the composites was calculated by means of the time dependent DFTB approach, and the position and composition of the VB and CB edges, along with the presence of weak mid-gap 2p  C states originating from the intact graphene-like patches in the r-GO substrate were discussed in detail in the context of conceivable photocatalytic activity of the composites. The constructed band alignment diagram implies formation of the staggered type II scheme, with the electric field offset that is sensitive to the titania cluster size. In the case of the nano-reticular TiO2, where only a fraction of the Ti atoms is engaged in the Ti-O-C linkers formation, recombination of the photogenerated charges is inhibited owing to favorable spatial separation effect. For small molecular TiO2 clusters with all Ti cations anchored to the r-GO layer fast cross-relaxation quenches the beneficial interfacial charge separation effect, since the strong hybridization of the oxygen and carbon states provides a convenient pathway for the efficient electronic coupling between the CB edge states of r-GO and the VB edge states of the TiO2 moieties. A phenomenological model of the molecular r-GO|Ti2O4 and the reticular r-GO|Ti43O86 composites was constructed in account for different photocatalytic behavior of both junctions.

9.
Phys Chem Chem Phys ; 18(18): 12592-603, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27092373

RESUMO

In this article the interaction between H2 and Ag(+), Cu(+), Mg(2+), Cd(2+), and Zn(2+) cations in cluster models of several sizes has been studied computationally. Depending on the changes imposed by the adsorption process on the H2 molecule the activation can vary in a wide range - from only slight weakening of the H-H bond to complete dissociation of the H2 molecule. The NOCV (Natural Orbitals for Chemical Valence) analysis allowed for decomposition of the electron density distortion into contributions easier for interpretation. Three essential factors have been identified (i-iii). In the case of bare cations the main contribution is a donation from σH2 to the cation (i). When a zeolite framework surrounding the cation is introduced, it hinders σ-donation and enhances π-backdonation from the cation to the antibonding orbital of the molecule (ii). For Cu(i) and Ag(i) sites π-backdonation becomes dominant, while for Mg(ii), Cd(ii), and Zn(ii) cations, the σ-donation, albeit diminished, still remains a dominant contribution. Calculations showed that the localization and coordination of Zn(ii) have crucial influence on its interaction with H2. We identified a Zn(2+) position at which the H2 molecule dissociates - here the interaction between H2 and oxygen framework (iii) plays a crucial role. Based on the calculations the mechanism of H2 transformation has been proposed. Upon heterolytic dissociation of H2 the Zn(0) moiety and two OH groups can be formed. Eventually, in two elementary steps, the H2 molecule can be restored. In this case, the ability of the site to activate/dissociate hydrogen is caused by the low coordination number of the zinc cation and the geometry of the site which allows positively charged H2 to interact with framework oxygen what enhances the formation of OH and Z-O-(ZnH)(+) groups.

10.
Chem Commun (Camb) ; 51(56): 11276-9, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26083792

RESUMO

Based on scanning tunneling microscopy experiments, we show that the covalent coupling of aryl halide monomers on the rutile TiO2(011)-(2 × 1) surface is controlled by the density of surface hydroxyl groups. The efficiency of the polymerization reaction depends on the level of surface hydroxylation, but the presence of hydroxyl groups is also essential for the reaction to occur.

11.
Phys Chem Chem Phys ; 17(20): 13267-73, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25920323

RESUMO

In the present work the function of a zeolite framework in modifying the properties of copper sites has been studied. The [Al(OH)4CuNO](0/+) systems were studied by applying the analysis of the electron density flows - contributions to deformation density between two interacting fragments. The systems were divided in the following partition scheme: the first fragment, [Al(OH)4](-) (tagged T1), and the second one, [CuNO](+/2+). The analysis allowed us to elucidate the function of the zeolite fragment in modification of the cation properties towards activating the NO molecule. For both [(T1)CuNO](0/+) systems several channels showing the role of the zeolite framework have been identified. The geometry of the adducts influences either the efficiency of the channels or spin polarization. The two most important channels, zeolites-cations, influence the flow of electrons between the copper site and the antibonding NO orbitals. One channel favors the π-backdonation in the plane perpendicular to the Cu-N-O plane while the other contribution influences the π-backdonation in the C-N-O plane. The first one is found only in the system with copper(I) and it is essential for facilitating the π-backdonation and activating the NO molecule. The second channel is spin sensitive for both copper(I) and copper(II) sites. In the case of the system with copper(i) the second channel favors the π-backdonation while in the system containing copper(ii) the direction of these flows is opposite for α and ß electrons.

13.
ACS Nano ; 6(10): 8536-45, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22970745

RESUMO

Adsorption and self-assembly of large π-conjugated 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) molecules on rutile TiO(2)(110) surface have been investigated using a combination of high-resolution scanning tunneling microscopy (STM), low-energy electron diffraction, and density functional theory calculations with inclusion of Grimme treatment of the dispersion forces (DFT-D). Evolution of the STM images as a function of PTCDA coverage is caused by transition of the adsorption mode from physisorbed single adspecies and meandering stripes into spontaneously ordered chemisorbed molecular assemblies. This change in the adsorption fashion is accompanied by significant bending of the intrinsically flat, yet elastic, PTCDA molecule, which allows for strong electronic coupling of the dye adspecies with the TiO(2) substrate. Extensive DFT-D modeling has revealed that adsorption is controlled by interfacial and intermolecular dispersion forces playing a dominant role in the adsorption of single PTCDA species, their self-organization into the meandering stripes, and at the monolayer coverage acting collectively to surmount the chemisorption energy barrier associated with the molecule bending. Analysis of the resulting density of states has revealed that alignment of the energy levels and strong electronic coupling at the PTCDA/TiO(2) interface are beneficial for dye sensitization purposes.


Assuntos
Anidridos/química , Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Perileno/análogos & derivados , Titânio/química , Absorção , Simulação por Computador , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Perileno/química , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA