Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169245, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072264

RESUMO

Glacier retreat is rapidly transforming some watersheds, with ramifications for water supply, ecological succession, important species such as Pacific salmon (Oncorhynchus spp.), and cultural uses of landscapes. To advance a more holistic understanding of the evolution of proglacial landscapes, we integrate multiple lines of knowledge starting in the early 1900s with contemporary data from the Taaltsux̱éi (Tulsequah) Watershed in British Columbia, Canada. Our objectives were to: 1) synthesize recent historical geography and Indigenous Knowledge, including glacier dynamics, and hydrology; 2) describe the limnology of a proglacial lake; 3) quantify decadal-scale downstream physical floodplain change; and 4) characterize riverine physical, chemical, and biological differences relative to distance from the proglacial lake. Since 1982, the Tulsequah Glacier has receded 0.07 km/yr, exposing a cold, deep, and growing proglacial lake. The downstream floodplain is rapidly changing; satellite imagery analysis revealed a 14 % increase in vegetation from 2003 to 2017 and Indigenous Knowledge described increases in vegetation and wildlife habitat over the last century. Contemporary measurements of physical-chemical water properties differed across sites representing the upper and lower watershed, and mainstem and off-channel habitats. Catches of juvenile salmonids in the upper watershed (closer to the glacier) were mostly limited to warmer, clearer groundwater-fed channels, whereas in the lower watershed there were salmonids in both groundwater-fed and mainstem habitats. There was limited zooplankton taxa diversity from the proglacial lake and benthic macroinvertebrates in the river. Collectively, our synthesis suggests that the transformation of proglacial landscapes experiencing rapid ice loss can be influenced by interlinked abiotic processes of glacier retreat, lake formation, and altered hydrology, as well as corresponding biological processes such as beaver repopulation, wetland formation, and riparian vegetation growth. These factors, along with expected increases to proglacial lake productivity and salmon habitat suitability, are an important consideration for forward-looking watershed management of glacier-fed rivers.


Assuntos
Ecossistema , Oncorhynchus , Animais , Salmão , Áreas Alagadas , Colúmbia Britânica
2.
Science ; 382(6673): 887-889, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37995230

RESUMO

Future ecological value of emerging habitats must be considered as climate change transforms the planet.


Assuntos
Migração Animal , Mudança Climática , Camada de Gelo , Mineração , Salmão , Animais , Ecossistema , Canadá , Política Ambiental
3.
Ecol Appl ; 33(6): e2898, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37303288

RESUMO

Metapopulations are often managed as a single contiguous population despite the spatial structure underlying their local and regional dynamics. Disturbances from human activities can also be spatially structured with mortality impacts concentrated to just a few local populations among the aggregate. Scale transitions between local and regional processes can generate emergent properties whereby the whole system can fail to recover as quickly as expected for an equivalent single population. Here, we draw on theory and empirical case studies to ask: what is the consequence of spatially structured ecological and disturbance processes on metapopulation recoveries? We suggest that exploring this question could help address knowledge gaps for managing metapopulations including: Why do some metapopulations recover quickly while others remain collapsed? And, what risks are unaccounted for when metapopulations are managed at aggregate scales? First, we used model simulations to examine how scale transitions among ecological and disturbance conditions interact to generate emergent metapopulation recovery outcomes. In general, we found that the spatial structure of disturbance was a strong determinant of recovery outcomes. Specifically, disturbances that unevenly impacted local populations consistently generated the slowest recoveries and highest conservation risks. Ecological conditions that dampened metapopulation recoveries included low dispersal, variable local demography, sparsely connected habitat networks, and spatially and temporally correlated stochastic processes. Second, we illustrate the unexpected challenges of managing metapopulations by examining the recoveries of three USA federally listed endangered species: Florida Everglade snail kites, California and Alaska sea otters, and Snake River Chinook salmon. Overall, our results show the pivotal role of spatial structure in metapopulation recoveries whereby the interplay between local and regional processes shapes the resilience of the whole system. With this understanding, we provide guidelines for resource managers tasked with conserving and managing metapopulations and identify opportunities for research to support the application of metapopulation theory to real-world challenges.


Assuntos
Ecossistema , Salmão , Humanos , Animais , Dinâmica Populacional , Densidade Demográfica , Espécies em Perigo de Extinção , Modelos Biológicos
4.
Nat Commun ; 12(1): 6816, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876560

RESUMO

Glacier retreat poses risks and benefits for species of cultural and economic importance. One example is Pacific salmon (Oncorhynchus spp.), supporting subsistence harvests, and commercial and recreational fisheries worth billions of dollars annually. Although decreases in summer streamflow and warming freshwater is reducing salmon habitat quality in parts of their range, glacier retreat is creating new streams and lakes that salmon can colonize. However, potential gains in future salmon habitat associated with glacier loss have yet to be quantified across the range of Pacific salmon. Here we project future gains in Pacific salmon freshwater habitat by linking a model of glacier mass change for 315 glaciers, forced by five different Global Climate Models, with a simple model of salmon stream habitat potential throughout the Pacific Mountain ranges of western North America. We project that by the year 2100 glacier retreat will create 6,146 (±1,619) km of new streams accessible for colonization by Pacific salmon, of which 1,930 (±569) km have the potential to be used for spawning and juvenile rearing, representing 0 to 27% gains within the 18 sub-regions we studied. These findings can inform proactive management and conservation of Pacific salmon in this era of rapid climate change.

5.
Bioscience ; 70(3): 220-236, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174645

RESUMO

Glaciers have shaped past and present habitats for Pacific salmon (Oncorhynchus spp.) in North America. During the last glacial maximum, approximately 45% of the current North American range of Pacific salmon was covered in ice. Currently, most salmon habitat occurs in watersheds in which glacier ice is present and retreating. This synthesis examines the multiple ways that glacier retreat can influence aquatic ecosystems through the lens of Pacific salmon life cycles. We predict that the coming decades will result in areas in which salmon populations will be challenged by diminished water flows and elevated water temperatures, areas in which salmon productivity will be enhanced as downstream habitat suitability increases, and areas in which new river and lake habitat will be formed that can be colonized by anadromous salmon. Effective conservation and management of salmon habitat and populations should consider the impacts of glacier retreat and other sources of ecosystem change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA