Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38300826

RESUMO

ACKR3 scavenges and degrades the stem cell recruiting chemokine CXCL12, which is essential for proper embryonic and, in particular, haematopoietic development. Here, we demonstrate strong expression of ACKR3 on trophoblasts. Using a maternally administered pharmacological blocker and Cre-mediated genetic approaches, we demonstrate that trophoblast ACKR3 is essential for preventing movement of CXCL12 from the mother to the embryo, with elevated plasma CXCL12 levels being detected in embryos from ACKR3-blocker-treated mothers. Mice born to mothers treated with the blocker are lighter and shorter than those born to vehicle-treated mothers and, in addition, display profound anaemia associated with a markedly reduced bone marrow haematopoietic stem cell population. Importantly, although the haematopoietic abnormalities are corrected as mice age, our studies reveal a postnatal window during which offspring of ACKR3-blocker-treated mice are unable to mount effective inflammatory responses to inflammatory/infectious stimuli. Overall, these data demonstrate that ACKR3 is essential for preventing CXCL12 transfer from mother to embryo and for ensuring properly regulated CXCL12 control over the development of the haematopoietic system.


Assuntos
Placenta , Receptores CXCR , Animais , Feminino , Camundongos , Gravidez , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Movimento , Mutação , Placenta/metabolismo , Receptores CXCR/genética , Receptores CXCR/metabolismo , Transdução de Sinais/genética
2.
Acta Pharm Sin B ; 14(1): 335-349, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261838

RESUMO

Targeting multiple immune mechanisms may overcome therapy resistance and further improve cancer immunotherapy for humans. Here, we describe the application of virus-like vesicles (VLV) for delivery of three immunomodulators alone and in combination, as a promising approach for cancer immunotherapy. VLV vectors were designed to deliver single chain interleukin (IL)-12, short-hairpin RNA (shRNA) targeting programmed death ligand 1 (PD-L1), and a dominant-negative form of IL-17 receptor A (dn-IL17RA) as a single payload or as a combination payload. Intralesional delivery of the VLV vector expressing IL-12 alone, as well as the trivalent vector (designated CARG-2020) eradicated large established tumors. However, only CARG-2020 prevented tumor recurrence and provided long-term survival benefit to the tumor-bearing mice, indicating a benefit of the combined immunomodulation. The abscopal effects of CARG-2020 on the non-injected contralateral tumors, as well as protection from the tumor cell re-challenge, suggest immune-mediated mechanism of protection and establishment of immunological memory. Mechanistically, CARG-2020 potently activates Th1 immune mechanisms and inhibits expression of genes related to T cell exhaustion and cancer-promoting inflammation. The ability of CARG-2020 to prevent tumor recurrence and to provide survival benefit makes it a promising candidate for its development for human cancer immunotherapy.

3.
PLoS One ; 18(2): e0280916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730267

RESUMO

The consumption of processed foods and sugary sodas in Western diets correlates with an increased incidence of obesity, metabolic syndromes such as type 2 diabetes, cardiovascular diseases, and autoimmune diseases including inflammatory bowel disease and rheumatoid arthritis. All these diseases have an inflammatory component, of which T lymphocytes can play a critical role in driving. Much has been learned regarding the importance of sugar, particularly glucose, in fueling effector versus regulatory T cells that can promote or dampen inflammation, respectively. In particular, glucose and its metabolic breakdown products via glycolysis are essential for effector T cell differentiation and function, while fatty acid-fueled oxidative phosphorylation supports homeostasis and function of regulatory T cells. Nevertheless, a critical knowledge gap, given the prevalence of diabetes in Western societies, is the impact of elevated glucose concentrations on the balance between effector versus regulatory T cells. To begin addressing this, we cultured naïve CD4+ T cells with different concentrations of glucose, and examined their differentiation into effector versus regulatory lineages. Surprisingly, high glucose promoted regulatory T cell differentiation and inhibited Th1 effector differentiation. This skewing towards the regulatory lineage occurred via an indirect mechanism that depends on lactate produced by activated glycolytic T cells. Addition of lactate to the T cell differentiation process promotes the differentiation of Treg cells, and activates Akt/mTOR signaling cascade. Hence, our findings suggest the existence of a novel feedback mechanism in which lactate produced by activated, differentiating T cells skews their lineage commitment towards the regulatory fate.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Linfócitos T Reguladores , Diferenciação Celular , Glucose/metabolismo , Lactatos/metabolismo
4.
J Immunol ; 208(3): 745-752, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031577

RESUMO

Cystic fibrosis (CF) is an inherited life-threatening disease accompanied by repeated lung infections and multiorgan inflammation that affects tens of thousands of people worldwide. The causative gene, cystic fibrosis transmembrane conductance regulator (CFTR), is mutated in CF patients. CFTR functions in epithelial cells have traditionally been thought to cause the disease symptoms. Recent work has shown an additional defect: monocytes from CF patients show a deficiency in integrin activation and adhesion. Because monocytes play critical roles in controlling infections, defective monocyte function may contribute to CF progression. In this study, we demonstrate that monocytes from CFTRΔF508 mice (CF mice) show defective adhesion under flow. Transplanting CF mice with wild-type (WT) bone marrow after sublethal irradiation replaced most (60-80%) CF monocytes with WT monocytes, significantly improved survival, and reduced inflammation. WT/CF mixed bone marrow chimeras directly demonstrated defective CF monocyte recruitment to the bronchoalveolar lavage and the intestinal lamina propria in vivo. WT mice reconstituted with CF bone marrow also show lethality, suggesting that the CF defect in monocytes is not only necessary but also sufficient to cause disease. We also show that monocyte-specific knockout of CFTR retards weight gains and exacerbates dextran sulfate sodium-induced colitis. Our findings show that providing WT monocytes by bone marrow transfer rescues mortality in CF mice, suggesting that similar approaches may mitigate disease in CF patients.


Assuntos
Adesão Celular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Monócitos/imunologia , Monócitos/transplante , Animais , Transplante de Medula Óssea , Líquido da Lavagem Broncoalveolar/citologia , Colite/patologia , Fibrose Cística/patologia , Integrinas/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL
5.
J Immunother Cancer ; 7(1): 324, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775909

RESUMO

BACKGROUND: The IL-17 family cytokines are potent drivers of colorectal cancer (CRC) development. We and others have shown that IL-17 mainly signals to tumor cells to promote CRC, but the underlying mechanism remains unclear. IL-17 also dampens Th1-armed anti-tumor immunity, in part by attracting myeloid cells to tumor. Whether IL-17 controls the activity of adaptive immune cells in a more direct manner, however, is unknown. METHODS: Using mouse models of sporadic or inducible colorectal cancers, we ablated IL-17RA in the whole body or specifically in colorectal tumor cells. We also performed adoptive bone marrow reconstitution to knockout CXCR3 in hematopoietic cells. Histological and immunological experimental methods were used to reveal the link among IL-17, chemokine production, and CRC development. RESULTS: Loss of IL-17 signaling in mouse CRC resulted in marked increase in the recruitment of CD8+ cytotoxic T lymphocytes (CTLs) and regulatory T cells (Tregs), starting from early stage CRC lesions. This is accompanied by the increased expression of anti-inflammatory cytokines IL-10 and TGF-ß. IL-17 signaling also inhibits the production of T cell attracting chemokines CXCL9 and CXCL10 by tumor cells. Conversely, the inability of hematopoietic cells to respond to CXCL9/10 resulted in decreased tumor infiltration by CTLs and Tregs, decreased levels of IL-10 and TGF-ß, and increased numbers of tumor lesions. Blockade of IL-17 signaling resulted in increased expression of immune checkpoint markers. On the other hand, treatment of mouse CRC with anti-CTLA-4 antibody led to increased expression of pro-tumor IL-17. CONCLUSION: IL-17 signals to colorectal tumor cells and inhibits their production of CXCL9/10 chemokines. By doing so, IL-17 inhibits the infiltration of CD8+ CTLs and Tregs to CRC, thus promoting CRC development. Cancer immunotherapy may be benefited by the use of anti-IL-17 agents as adjuvant therapies, which serve to block both IL-17-mediated tumor promotion and T cell exclusion.


Assuntos
Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Interleucina-17/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Quimiocina CXCL10/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Citocinas/biossíntese , Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Estadiamento de Neoplasias , Transdução de Sinais/efeitos dos fármacos
6.
Semin Immunol ; 32: 43-53, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28982615

RESUMO

Chronic inflammation is linked to the development of multiple cancers, including those of the colon. Inflammation in the gut induces carcinogenic mutagenesis and promotes colorectal cancer initiation. Additionally, myeloid and lymphoid cells infiltrate established tumors and propagate so called "tumor-elicited inflammation", which in turn favors cancer development by supporting the survival and proliferation of cancer cells. In addition to the interaction between cancer cells and tumor infiltrating immune cells, the gut also hosts trillions of bacteria and other microbes, whose roles in colorectal inflammation and cancer have only been appreciated in the past decade or so. Commensal and pathobiotic bacteria promote colorectal cancer development by exploiting tumor surface barrier defects following cancer initiation, by invading normal colonic tissue and inducing local inflammation, and by generating genotoxicity against colonic epithelial cells to accelerate their oncogenic transformation. On the other hand, a balanced population of microbiota is important for the prevention of colorectal cancer due to their roles in providing certain bacterial metabolites and inhibiting intestinal inflammation. In this review we summarize our current knowledge regarding the link between microbiota, inflammation, and colorectal cancer, and aim to delineate the mechanisms by which gut microbiome and inflammatory cytokines regulate colorectal tumorigenesis.


Assuntos
Neoplasias Colorretais/imunologia , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Microbiota/imunologia , Animais , Carcinogênese , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Simbiose
7.
G3 (Bethesda) ; 6(12): 4217-4226, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27760793

RESUMO

Sleep is an essential behavioral state of rest that is regulated by homeostatic drives to ensure a balance of sleep and activity, as well as independent arousal mechanisms in the central brain. Dopamine has been identified as a critical regulator of both sleep behavior and arousal. Here, we present results of a genetic screen that selectively restored the Dopamine Receptor (DopR/DopR1/dumb) to specific neuroanatomical regions of the adult Drosophila brain to assess requirements for DopR in sleep behavior. We have identified subsets of the mushroom body that utilizes DopR in daytime sleep regulation. These data are supported by multiple examples of spatially restricted genetic rescue data in discrete circuits of the mushroom body, as well as immunohistochemistry that corroborates the localization of DopR protein within mushroom body circuits. Independent loss of function data using an inducible RNAi construct in the same specific circuits also supports a requirement for DopR in daytime sleep. Additional circuit activation of discrete DopR+ mushroom body neurons also suggests roles for these subpopulations in sleep behavior. These conclusions support a new separable function for DopR in daytime sleep regulation within the mushroom body. This daytime regulation is independent of the known role of DopR in nighttime sleep, which is regulated within the Fan-Shaped Body (FSB). This study provides new neuroanatomical loci for exploration of dopaminergic sleep functions in Drosophila, and expands our understanding of sleep regulation during the day vs. night.


Assuntos
Drosophila/fisiologia , Receptores Dopaminérgicos/genética , Sono/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal , Encéfalo/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Técnicas de Inativação de Genes , Testes Genéticos , Genótipo , Masculino , Corpos Pedunculados/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA