Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Basic Microbiol ; 64(5): e2300599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308078

RESUMO

This study examined the impact of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) conidia on the eggs, larvae, pupae, and adults of Spodoptera frugiperda. The results showed that eggs, larvae, pupae, and adults exhibited mortality rates that were dependent on the dose. An increased amount of conidia (1.5 × 109 conidia/mL) was found to be toxic to larvae, pupae, and adults after 9 days of treatment, resulting in a 100% mortality rate in eggs, 98% in larvae, 76% in pupae, and 85% in adults. A study using earthworms as bioindicators found that after 3 days of exposure, M. anisopliae conidia did not cause any harmful effects on the earthworms. In contrast, the chemical treatment (positive control) resulted in 100% mortality at a concentration of 40 ppm. Histopathological studies showed that earthworm gut tissues treated with fungal conidia did not show significant differences compared with those of the negative control. The gut tissues of earthworms treated with monocrotophos exhibited significant damage, and notable differences were observed in the chemical treatment. The treatments with 70 and 100 µg/mL solutions of Eudrilus eugeniae epidermal mucus showed no fungal growth. An analysis of the enzymes at a biochemical level revealed a decrease in the levels of acetylcholinesterase, α-carboxylesterase, and ß-carboxylesterase in S. frugiperda larvae after exposure to fungal conidia. This study found that M. anisopliae is effective against S. frugiperda, highlighting the potential of this entomopathogenic fungus in controlling this agricultural insect pest.


Assuntos
Larva , Metarhizium , Controle Biológico de Vetores , Spodoptera , Esporos Fúngicos , Animais , Metarhizium/patogenicidade , Spodoptera/microbiologia , Spodoptera/efeitos dos fármacos , Larva/microbiologia , Virulência , Esporos Fúngicos/patogenicidade , Esporos Fúngicos/crescimento & desenvolvimento , Oligoquetos/microbiologia , Pupa/microbiologia , Óvulo/microbiologia
2.
Arch Insect Biochem Physiol ; 114(2): 1-19, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37497800

RESUMO

Insect pests represent a major threat to human health and agricultural production. With a current over-dependence on chemical insecticides in the control of insect pests, leading to increased chemical resistance in target organisms, as well as side effects on nontarget organisms, the wider environment, and human health, finding alternative solutions is paramount. The employment of entomopathogenic fungi is one such potential avenue in the pursuit of greener, more target-specific methods of insect pest control. To this end, the present study tested the chemical constituents of Metarhizium anisopliae fungi against the unicellular protozoan malaria parasite Plasmodium falciparum, the insect pests Anopheles stephensi Listen, Spodoptera litura Fabricius, and Tenebrio molitor Linnaeus, as well as the nontarget bioindicator species, Eudrilus eugeniae Kinberg. Fungal crude chemical molecules caused a noticeable anti-plasmodial effect against P. falciparum, with IC50 and IC90 values of 11.53 and 7.65 µg/mL, respectively. The crude chemical molecules caused significant larvicidal activity against insect pests, with LC50 and LC90 values of 49.228-71.846 µg/mL in A. stephensi, 32.542-76.510 µg/mL in S. litura, and 38.503-88.826 µg/mL in T. molitor at 24 h posttreatment. Based on the results of the nontarget bioassay, it was revealed that the fungal-derived crude extract exhibited no histopathological sublethal effects on the earthworm E. eugeniae. LC-MS analysis of M. anisopliae-derived crude metabolites revealed the presence of 10 chemical constituents. Of these chemicals, three major chemical constituents, namely, camphor (15.91%), caprolactam (13.27%), and monobutyl phthalate (19.65%), were highlighted for potential insecticidal and anti-malarial activity. The entomopathogenic fungal-derived crude extracts thus represent promising tools in the control of insect pests and malarial parasites.


Assuntos
Antimaláricos , Inseticidas , Metarhizium , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/química , Controle de Insetos , Insetos , Controle Biológico de Vetores/métodos
3.
Heliyon ; 9(5): e16133, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251900

RESUMO

The present study aims to evaluate the different nanoparticles (Cu NPs, KI NPs, Ag NPs, Bd NPs, and Gv NPs) against 4th instar Spodoptera frugiperda larvae as well as the microbial toxicity, phytotoxicity, and soil pH. Nanoparticles were tested at three concentrations (1000, 10000, and 100000 ppm) using two methods (food dip and larvae dip) against S. frugiperda larvae. Results (from the larval dip method) showed that among the nanoparticles, the KI NPs caused 63%, 98%, and 98% mortality within 5 days in the treatment of 1000, 10000, and 100000 ppm, respectively. After 24 h post treatment, a 1000 ppm concentration showed 95%, 54%, and 94% germination rates in Metarhizium anisopliae, Beauveria bassiana, and Trichoderma harzianum, respectively. The phytotoxicity evaluation clearly showed that NPs did not affect the morphology of the corn plants after the treatment. The soil nutrient analysis results showed that no effect was observed in soil pH or soil nutrients compared to control treatments. The study clearly showed that nanoparticles are caused toxic effect against S. frugiperda larvae.

4.
Heliyon ; 9(4): e14808, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37089397

RESUMO

In the present study Acacia nilotica seed derived essential oils were tested against Spodoptera litura, Tenebrio molitor, Oxycarenus hyalinipennis, and Aphis fabae, as well as their effects on non-target species Eudrilus eugeniae and Artemia salina at 24 h post treatment. The seed essential oil produced insecticidal activity against A. fabae (LC50 = 41.679, LC90 = 75.212 µl/mL), O. hyalinipennis (LC50 = 37.629, LC90 = 118.485 µl/mL), T. molitor (LC50 = 56.796, LC90 = 201.912 µl/mL), and S. litura (LC50 = 62.215, LC90 = 241.183 µl/mL). Essential oils do not cause a remarkable effect on E. eugeniae and A. salina cytotoxicity. The essential oils produced a lower effect on Artemia salina (LC50 = 384.382, LC90 = 1341.397 µl/mL) and no lethal effects were observed on E. eugeniae. The histopathological evaluation showed no sub-lethal effects of essential oils on earthworm gut tissues. GC-MS analysis results revealed that the major chemical constituent was hexadecane (19.560%) and heptacosane (17.214%) and FT-IR analysis revealed the presence of alkanes and alkyles, aromatics, and amides functional groups that may be involved in insecticidal activity. Overall, the results showed that the seed derived essential oil has excellent insecticidal action against major agricultural insect pests and may therefore offer an environmentally benign alternative to conventional insecticide.

5.
Front Microbiol ; 14: 1104079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937255

RESUMO

Entomopathogenic fungi from microbial sources are a powerful tool for combating insecticide resistance in insect pests. The purpose of the current study was to isolate, identify, and evaluate bag-formulated entomopathogenic fungal conidial virulence against insect pests. We further investigated the enzymatic responses induced by the entomopathogenic fungi as well as the effect on a non-target species. Entomopathogenic fungi were isolated from the Palamalai Hills, India, using the insect bait method, and the Metarhizium majus (MK418990.1) entomopathogen was identified using biotechnological techniques (genomic DNA isolation and 18S rDNA amplification). Bag-formulated fungal conidial efficacy (2.5 × 103, 2.5 × 104, 2.5 × 105, 2.5 × 106, and 2.5 × 107 conidia/ml) was evaluated against third instar larvae of Spodoptera frugiperda at 3, 6, 9, and 12 days of treatment, and acid and alkaline phosphatases, catalase, and superoxide dismutase enzymatic responses were evaluated at 3 days post-treatment. After 12 days of treatment, non-target assays on the earthworm Eudrilus eugeniae were performed using an artificial soil assay. Results of the bag formulated fungal conidial treatment showed that S. frugiperda had high susceptibility rates at higher concentrations (2.5 × 107 conidia/ml) of M. majus. Lower concentration of 2.5 × 103 conidia/ml caused 68.6% mortality, while 2.5 × 107 conidia/ml caused 100% mortality at 9 days post treatment. Investigation into enzymatic responses revealed that at 3 days post M. majus conidia exposure (2.5 × 103 conidia/ml), insect enzyme levels had significantly changed, with acid and alkaline phosphatases, and catalase enzymes significantly reduced and superoxide dismutase enzymes significantly raised relative to the control. After 12 days of treatment, no sublethal effects of M. majus conidia were observed on E. eugeniae, with no observed damage to gut tissues including lumen and epithelial cells, the nucleus, setae, coelom, mitochondria, and muscles. This study offers support for the use of fungal conidia in the target-specific control of insect pests.

6.
Insects ; 13(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36354854

RESUMO

This study aimed to synthesize and evaluate the efficacy of CuO NPs (copper oxide nanoparticles) with varying test concentrations (10−500 ppm) against larvicidal, antifeedant, immunological, and enzymatic activities against larvae of S. frugiperda at 24 h of treatment. Copper nanoparticles were characterized by using a scanning electron microscope (SEM) and energy dispersive X-ray (EDaX) analysis. The EDaX analysis results clearly show that the synthesized copper nanoparticles contain copper as the main element, and the SEM analysis results show nanoparticle sizes ranging from 29 to 45 nm. The CuO NPs showed remarkable larvicidal activity (97%, 94%, and 81% were observed on the 3rd, 4th, and 5th instar larvae, respectively). The CuO NPs produced high antifeedant activity (98.25%, 98.01%, and 98.42%), which was observed on the 3rd, 4th, and 5th instar larvae, respectively. CuO NPs treatment significantly reduced larval hemocyte levels 24 h after treatment; hemocyte counts and sizes changed in the CuO NPs treatment compared to the control. After 24 h of treatment with CuO NPs, the larval acetylcholinesterase enzyme levels decreased with dose-dependent activity. The present findings conclude that CuO NPs cause remarkable larvicidal antifeedant activity and that CuO NPs are effective, pollution-free green nano-insecticides against S. frugiperda.

7.
Sci Rep ; 12(1): 16775, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202839

RESUMO

Insect pests of agricultural crops have establish immunological tolerance against fungal infection caused by pathogens via different humoral and cellular processes. Fungal infection can be prevented by insect antioxidant and detoxifying enzymes, but there is no clear understanding of how they physiologically and biochemically interact. Our study aims to examine the antioxidant and detoxifying enzyme defense systems of the pest insect Spodoptera litura in response to infection by Metarhizium flavoviride. At 48 h following exposure to M. flavoviride, antioxidant enzyme levels were modified, and phenoloxidase and total hemocyte count were decreased significantly. The amount of detoxifying enzymes increased significantly. M. flavoviride appears to directly affect the S. litura immune system and results in decreased immunity. In a bioassay, M. flavoviride was found to be harmful to S. litura larvae in their third and fourth instar stage. M. flavoviride may be an effective tool in the control of S. litura larvae. Such entomopathogenic fungi represent cheaper, pollution free, target specific, promising alternatives to synthetic chemical tools in the for control insect pests.


Assuntos
Metarhizium , Mariposas , Animais , Antioxidantes/farmacologia , Larva , Monofenol Mono-Oxigenase , Spodoptera , Esporos Fúngicos , Virulência
8.
Toxicol Rep ; 9: 713-719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433272

RESUMO

Ascosphaera apis is a fungal pathogen, which causes chalkbrood disease in bees and is threatening beekeeping worldwide. The demand for organic honey for export has lately heightened hence the biological control is the option. This study aimed at the in vitro evaluation of the potency of plant extracts against chalkbrood disease for the possibility of being employed as a biological control strategy. The results showed that the combination of plant extracts from cinnamon with spearmint, cinnamon with lemongrass, cinnamon with geranium, and cinnamon with palmarosa at a concentration of 25% and 12.5% inhibited mycelial growth of A. apis by 100%. This demonstrated the potentiality of combining different plant extracts in controlling this disease. In addition, oregano caused inhibition of up to 100% singly. Conclusively, cinnamon in combination with several extracts has a great potential in curbing this disease while oregano offers an amazing remedy and hence the best formulations should be generated for the beekeeper to utilize.

9.
J Fungi (Basel) ; 7(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947055

RESUMO

Fall armyworm, Spodoptera frugiperda, entered Thailand in late 2018 and has now spread in several regions, with devastating effects in maize and rice production, which are some of the most important cereals in the world. Since then, farmers have utilized the available chemical insecticides to try to control it, but their efforts have been futile. Instead, they have ended up using extraordinary dosages, hence threatening non-target species and other fauna and flora, as well as being costly. In this regard, research has been ongoing, aiming to come up with eco-friendly solutions for this insect. We surveyed and collected various isolates of native entomopathogenic fungi intending to test their efficacy against fall armyworm. Six isolates of entomopathogenic fungi were obtained and identified to Beauveria bassiana based on morphological characteristics and multi-gene phylogenetic analyses. Thereafter, the six isolates of B. bassiana were used to perform efficacy experiments against fall armyworm. Additionally, the glycosyl transferase-like protein 1 (GAS1) gene was analyzed. Consequently, all the isolates showed efficacy against S. frugiperda, with isolate BCMU6 causing up to 91.67% mortality. Further, molecular analysis revealed that all the isolates possess the GAS1 gene, which contributed to their virulence against the insect. This is the first report of utilizing native entomopathogenic B. bassiana to manage S. frugiperda in Thailand, with the revelation of GAS1 as a factor in inducing virulence and cuticle penetration. This study has provided valuable information on the potential development of Beauveria bassiana as an eco-friendly bioinsecticide for the management of fall armyworm in Thailand.

10.
Insects ; 12(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34821816

RESUMO

Fall armyworm Spodoptera frugiperda is a major pest of corn, rice, and sorghum among other crops usually controlled using synthetic or biological insecticides. Currently, the new invention of nanotechnology is taking root in the agricultural industry as an alternative source of pest management that is target-specific, safe, and efficient. This study sought to determine the efficacy of commercial Zinc Oxide (ZnO) nanoparticles (NPs) towards S. frugiperda under laboratory conditions. ZnO NPs were diluted into different concentrations (100-500 ppm), where the baby corn used to feed the S. frugiperda larvae was dipped. The development of the insect feeding on food dipped in ZnO solution was significantly (p < 0.05) affected, and the number of days that the insect took to complete its life cycle had a significant difference compared to the control. There was a significant difference in the adults' emergence in all the concentrations of ZnO NPs compared to the control, with over 90% of the eggs successfully going through the life cycle until adult emergence. Additionally, several body malformations were observed throughout the lifecycle of the insect. Also, the fecundity of the females was greatly affected. The findings of this study suggest the possibility of exploitation of ZnO nanoparticles not only to manage S. frugiperda but to significantly reduce their population in the ecosystem through body deformations, reduced fecundity, reduced oviposition, and hatchability of eggs. It will be a valuable tool in integrated pest management regimens.

11.
Artigo em Inglês | MEDLINE | ID: mdl-34639837

RESUMO

Currently, medical and stored grain pests are major concerns of public health and economies worldwide. The synthetic pesticides cause several side effects to human and non-target organisms. Copper nanoparticles (CuNPs) were synthesized from an aqueous extract of Metarhizium robertsii and screened for insecticidal activity against Anopheles stephensi, Aedes aegypti, Culex quinquefasciatus, Tenebrio molitor and other non-target organisms such as Artemia salina, Artemia nauplii, Eudrilus eugeniae and Eudrilus andrei. The synthesized copper nano-particles were characterized using, UV-vis spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy Dispersive X-Ray analysis (EDaX), High Resolution Scanning Electron Microscope (HR-SEM) and Atomic Force Microscope (AFM) analysis. Insects were exposed to 25 µg/mL concentration produced significant mortality against larvae of A. stephensi, A. aegypti, C. quinquefasciatus and T. molitor. The lower toxicity was observed on non-target organisms. Results showed that, M. robertsii mediated synthesized CuNPs is highly toxic to targeted pests while they had lower toxicity were observed on non-target organisms.


Assuntos
Aedes , Culex , Inseticidas , Nanopartículas Metálicas , Praguicidas , Animais , Cobre/toxicidade , Humanos , Inseticidas/toxicidade , Larva , Nanopartículas Metálicas/toxicidade , Metarhizium , Extratos Vegetais , Folhas de Planta , Prata
12.
J Pathog ; 2018: 1806830, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515330

RESUMO

Ctenocephalides felis is an ectoparasitic flea species commonly found on dogs and cats. The current study verified the in vitro virulence of conidia of the entomopathogenic fungus Beauveria bassiana produced under different color LED light (red, blue, purple, green, yellow, and white) to adults of C. felis. The fungal isolates were cultivated on malt extract agar (MEA). Bioassay treatments used aerial conidia in test tubes. Adult fleas were obtained from a house cat in Chiang Mai province, Thailand. The experiments were composed of one control and eleven treatment groups. All of the treatments with B. bassiana conidia caused adult mortality after an exposure of 12 h. Among the conditions used in this study, B. bassiana cultured under red LED and fluorescent light were the most effective in causing mortality (100 %) in adult fleas after 36 h. The experimental results indicate that these aerial conidia of B. bassiana have promising potential for use in control of C. felis adult stages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA