Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Commun Chem ; 6(1): 277, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110481

RESUMO

Understanding the behaviour of active catalyst sites at the atomic level is crucial for optimizing catalytic performance. Here, the evolution of Pt and Cu dopants in Au25 clusters on CeO2 supports is investigated in the water-gas shift (WGS) reaction, using operando XAFS and DRIFTS. Different behaviour is observed for the Cu and Pt dopants during the pretreatment and reaction. The Cu migrates and builds clusters on the support, whereas the Pt creates single-atom active sites on the surface of the cluster, leading to better performance. Doping with both metals induces strong interactions and pretreatment and reaction conditions lead to the growth of the Au clusters, thereby affecting their catalytic behaviour. This highlights importance of understanding the behaviour of atoms at different stages of catalyst evolution. These insights into the atomic dynamics at the different stages are crucial for the precise optimisation of catalysts, which ultimately enables improved catalytic performance.

2.
ACS Nano ; 17(20): 20376-20386, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37805942

RESUMO

Chiral gold nanoclusters offer significant potential for exploring chirality at a fundamental level and for exploiting their applications in sensing and catalysis. However, their widespread use is impeded by low yields in synthesis, tedious separation procedures of their enantiomeric forms, and limited thermal stability. In this study, we investigated the direct synthesis of enantiopure chiral nanoclusters using the chiral ligand 2-MeBuSH in the fabrication of Au25, Au38, and Au144 nanoclusters. Notably, this approach leads to the unexpected formation of intrinsically chiral clusters with high yields for chiral Au38 and Au144 nanoclusters. Experimental evaluation of chiral activity by circular dichroism (CD) spectroscopy corroborates previous theoretical calculations, highlighting the stronger CD signal exhibited by Au144 compared to Au38 or Au25. Furthermore, the formation of a single enantiomeric form is experimentally confirmed by comparing it with intrinsically chiral Au38(2-PET)24 (2-PET: 2-phenylethanethiol) and is supported theoretically for both Au38 and Au144. Moreover, the prepared chiral clusters show stability against diastereoisomerization, up to temperatures of 80 °C. Thus, our findings not only demonstrate the selective preparation of enantiopure, intrinsically chiral, and highly stable thiolate-protected Au nanoclusters through careful ligand design but also support the predicted "super" chirality in the Au144 cluster, encompassing hierarchical chirality in ligands, staple configuration, and core structure.

3.
Bioelectrochemistry ; 153: 108498, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37399652

RESUMO

Electroporation is a useful tool for the manipulation with the cell membrane permeability. Underlying physicochemical processes taking place at the molecular level during electroporation are relatively well studied. However, various processes remain unknown, one of them is lipid oxidation, a chain reaction that causes degradation of lipids, and might explain the long-lasting membrane permeability after the electric field has ceased. The aim of our study was to observe the differences in the electrical properties of planar lipid bilayers, as in vitro cell membrane models, due to lipid oxidation. Phospholipids were chemically oxidized and oxidation products were analysed using mass spectrometry. Electrical properties, resistance R (Ω) and capacitance C (F) were measured using an LCR meter. Using a previously developed measuring device, a linear increasing signal was applied to a stable bilayer in order to measure its breakdown voltage Ubr (V) and lifetime tbr (µs). We observed an increase in conductance and capacitance of the oxidized planar lipid bilayers when compared to their non-oxidized counterparts. With increasing lipid oxidation, the core of the bilayer becomes more polar, and consequently more permeable. Our findings can explain the long-lasting permeability of the cell membrane after electroporation.


Assuntos
Eletroporação , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Eletroporação/métodos , Terapia com Eletroporação , Fosfolipídeos
4.
J Am Soc Mass Spectrom ; 34(8): 1647-1652, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37400456

RESUMO

Selected organometallic compounds are nowadays extensively used as highly efficient catalysts in organic synthesis. A great variety of different ligand systems exists, of which phosphine-based ligands are a significant subgroup. While mass spectrometry, predominantly electrospray ionization mass spectrometry (ESI-MS), is a standard analytical technique for the identification of new ligands and their metal complexes, there is little information on the behavior of phosphine-based ligands/molecules by electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) at low collision energies (<100 eV) in the literature. Here, we report a study on the identification of typical product ions occurring in tandem mass spectra of selected phosphine-based ligand systems by ESI-CID-MS/MS. The influence on the fragmentation behavior of different backbones (pyridine, benzene, triazine) as well as different spacer groups (amine, methylamine, methylene), which are directly linked to the phosphine moiety, is investigated by tandem mass spectrometry. In addition, possible fragmentation pathways are elaborated based on the assigned masses in the tandem mass spectra with high-resolution accurate mass determination. This knowledge may be particularly useful in the future for the elucidation of fragmentation pathways for coordination compounds by MS/MS, where the studied compounds serve as building blocks.

5.
Anal Bioanal Chem ; 414(25): 7531-7542, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35551432

RESUMO

The properties of biogenic aerosol strongly depend on the particle's proteinaceous compounds. Proteins from primary biological aerosol particles (PBAPs) can cause allergic reactions in the human respiratory system or act as ice and condensation nuclei in clouds. Consequently, these particles have high impact on human health and climate. The detection of biogenic aerosol is commonly performed with fluorescence-based techniques. However, many PBAPs (i.e., pollen of birch, mugwort, or ragweed) show weak or rather low fluorescence signals in the particular protein region (λex ~ 255-280 nm, λem ~ 280-350 nm). We hypothesize that the fluorescence signal of proteins present in birch pollen is being distorted within its native matrix. In this study, we conducted in vitro quenching experiments and employed UV/Vis spectroscopy, capillary zone electrophoresis (CZE), liquid chromatography (LC), electrospray ionization mass spectrometry (ESI-MS), and multistage MS (MS2 and MS3) to target major components in birch pollen washing water (BPWW) possibly quenching the fluorescence activity of proteins and thus explaining the lack of corresponding protein fluorescent signals. We identified quercetin-3-O-sophoroside (Q3OS, MW 626 g mol-1) to be the main UV/Vis absorbing component in BPWW. Our results point out that Q3OS suppresses the fluorescence of proteins in our samples predominantly due to inner filter effects. In general, when applying fluorescence spectroscopy to analyze and detect PBAPs in the laboratory or the atmosphere, it is important to critically scrutinize the obtained spectra.


Assuntos
Alérgenos , Betula , Alérgenos/análise , Betula/química , Humanos , Gelo/análise , Pólen/química , Quercetina/análogos & derivados
6.
Rapid Commun Mass Spectrom ; 36(10): e9281, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35229369

RESUMO

RATIONALE: Organometallic compounds are becoming increasingly important in their industrial application as catalysts. Mass spectrometry is an essential tool for the structural confirmation of such organometallics. Because the analysis of this class of molecules can be challenging, the ionization behavior and structural confirmation of selected transition metal catalysts are described in this work. METHODS: The transition metal catalysts investigated were analyzed using classical vacuum MALDI reflectron TOF-MS as well as intermediate pressure matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry (MALDI QTOF-MS). Obtained mass spectra were compared with electrospray ionization MS (ESI-MS) already established for organometallic compounds, utilizing a QTOF mass spectrometer here. In addition, various sample preparations, including two selected MALDI matrices (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile and 2,2':5',2″-terthiophene) with different solvent combinations for MALDI-MS measurements, were investigated in detail with respect to their correct isotope distribution of the molecular ions observed. RESULTS: All investigated organometallic compounds were successfully identified by vacuum and intermediate pressure MALDI-MS. Accurate masses of ions related to molecular ion species (e.g., [M-Cl]+ , [M]+ , and [M + Na]+ ) could be determined by MALDI QTOF-MS measurements with a mass error of less than ±5 ppm for all compounds. Both investigated MALDI matrices performed equally on both instruments. The impact of the analyte/matrix solvent mixtures turned out to be crucial for a successful analysis of the investigated compounds. In contrast, ESI QTOF-MS yielded masses of ions related to molecular ion species in favorable cases. CONCLUSIONS: The use of MALDI-MS for the structural confirmation of organometallic compounds is still not widely used. Nevertheless, this work showed that this analytical technique does have some benefits. The analysis of neutral catalysts proves to be quite useful, concluding that this technique provides a complement and/or an alternative to ESI-MS.


Assuntos
Compostos Organometálicos , Espectrometria de Massas por Ionização por Electrospray , Íons , Lasers , Solventes , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
7.
J Am Chem Soc ; 143(42): 17825-17832, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34644064

RESUMO

We report on an additive-free Mn(I)-catalyzed dehydrogenative silylation of terminal alkenes. The most active precatalyst is the bench-stable alkyl bisphosphine Mn(I) complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate which undergoes rapid Si-H bond cleavage of the silane HSiR3 forming the active 16e- Mn(I) silyl catalyst [Mn(dippe)(CO)2(SiR3)] together with liberated butanal. A broad variety of aromatic and aliphatic alkenes was efficiently and selectively converted into E-vinylsilanes and allylsilanes, respectively, at room temperature. Mechanistic insights are provided based on experimental data and DFT calculations revealing that two parallel reaction pathways are operative: an acceptorless reaction pathway involving dihydrogen release and a pathway requiring an alkene as sacrificial hydrogen acceptor.

8.
Z Anorg Allg Chem ; 647(14): 1429-1435, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34413550

RESUMO

In the present work we have prepared and fully characterized several Fe(0) complexes of the type [Fe(PNP)(CO)2] treating Fe(II) complexes [Fe(PNP)(Cl)2] with KC8 in the presence of carbon monoxide. While complexes [Fe(PNPNMe-iPr)(CO)2], [Fe(PNPNEt-iPr)(CO)2] adopt a trigonal bipyramidal geometry, the bulkier and more electron rich [Fe(PNPNH-tBu)(CO)2] is closer to a square pyramidal geometry. Mössbauer spectra showed isomer shifts very close to 0 and similar to those reported for Fe(I) systems. Quadrupole splitting values range between 2.2 and 2.7 mm s-1 both in experiments and DFT calculations, while those of Fe(I) complexes are much smaller (∼0.6 mm s-1).

9.
Organometallics ; 40(2): 278-285, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33519014

RESUMO

The synthesis, characterization, and catalytic activity of low-spin {CoNO}8 pincer complexes of the type [Co(PCP)(NO)(H)] are described. These compounds are obtained either by reacting [Co(PCP)(κ2-BH4)] with NO and Et3N or, alternatively, by reacting [Co(PCP)(NO)]+ with boranes, such as NH3·BH3 in solution. The five-coordinate, diamagnetic Co(III) complex [Co(PCPNMe-iPr)(NO)(H)] was found to be the active species in the hydroboration of alkenes with anti-Markovnikov selectivity. A range of aromatic and aliphatic alkenes were efficiently converted with pinacolborane (HBpin) under mild conditions in good to excellent yield. Mechanistic insight into the catalytic reaction is provided by means of isotope labeling, NMR spectroscopy, and APCI/ESI-MS as well as DFT calculations.

10.
J Phys Chem C Nanomater Interfaces ; 124(43): 23626-23636, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33154783

RESUMO

Doping gold nanoclusters with palladium has been reported to increase their catalytic activity and stability. PdAu24 nanoclusters, with the Pd dopant atom located at the center of the Au cluster core, were supported on titania and applied in catalytic CO oxidation, showing significantly higher activity than supported monometallic Au25 nanoclusters. After pretreatment, operando DRIFTS spectroscopy detected CO adsorbed on Pd during CO oxidation, indicating migration of the Pd dopant atom from the Au cluster core to the cluster surface. Increasing the number of Pd dopant atoms in the Au structure led to incorporation of Pd mostly in the S-(M-S) n protecting staples, as evidenced by in situ XAFS. A combination of oxidative and reductive thermal pretreatment resulted in the formation of isolated Pd surface sites within the Au surface. The combined analysis of in situ XAFS, operando DRIFTS, and ex situ XPS thus revealed the structural evolution of bimetallic PdAu nanoclusters, yielding a Pd single-site catalyst of 2.7 nm average particle size with improved CO oxidation activity.

11.
Nanoscale ; 12(24): 12809-12816, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32319978

RESUMO

The properties of gold nanoclusters, apart from being size-dependent, are strongly related to the nature of the protecting ligand. Ligand exchange on Au nanoclusters has been proven to be a powerful tool for tuning their properties, but has so far been limited to dissolved clusters in solution. By supporting the clusters previously functionalized in solution, it is uncertain that the functionality is still accessible once the cluster is on the surface. This may be overcome by introducing the desired functionality by ligand exchange after the cluster deposition on the support material. We herein report the first successful ligand exchange on supported (immobilized) Au11 nanoclusters. Dropcast films of Au11(PPh3)7Br3 on planar oxide surfaces were shown to react with thiol ligands, resulting in clusters with a mixed ligand shell, with both phosphines and thiolates being present. Laser ablation inductively coupled plasma mass spectrometry and infrared spectroscopy confirmed that the exchange just takes place on the cluster dropcast. Contrary to systems in solution, the size of the clusters did not increase during ligand exchange. Different structures/compounds were formed depending on the nature of the incoming ligand. The feasibility to extend ligand engineering to supported nanoclusters is proven and it may allow controlled nanocluster functionalization.

12.
Extremophiles ; 24(3): 413-420, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32200441

RESUMO

Archaeal lipids are constituted of two isoprenoid chains connected via ether bonds to glycerol in the sn-2, 3 position. Due to these unique properties archaeal lipids are significantly more stable against high temperature, low pH, oxidation and enzymatic degradation than conventional lipids. Additionally, in members of the phylum Crenarchaeota condensation of two (monopolar) archaeal diether lipids to a single (bipolar) tetraether lipid as well as formation of cyclopentane rings in the isoprenoid core strongly reduce permeability of the crenarchaeal membranes. In this work we show that the Crenarchaeum Sulfolobus acidocaldarius changes its lipid composition as reaction to a shift in growth rate caused by nutrient limitation. We thereby identified a novel influencing factor for the lipid composition of S. acidocaldarius and were able to determine the effect of this factor on the lipid composition by using MALDI-MS for the semi-quantification of an archaeal lipidome: a shift in the specific growth rate during a controlled continuous cultivation of S. acidocaldarius from 0.011 to 0.035 h-1 led to a change in the ratio of diether to tetraether lipids from 1:3 to 1:5 and a decrease of the average number of cyclopentane rings from 5.1 to 4.6.


Assuntos
Sulfolobus acidocaldarius , Temperatura Alta , Lipídeos de Membrana
13.
Anal Bioanal Chem ; 412(9): 2081-2088, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31332469

RESUMO

Filamentous fungi are well-established production hosts that feature a strong interconnection between morphology, physiology, and productivity. For penicillin production in Penicillium chrysogenum, industrial processes frequently favor a pellet morphology comprising compact hyphal agglomerates. Inherently these tightly packed entanglements lead to inactive, degrading sections within the pellet's core because of limitations. Optimal process design requires detailed knowledge of the nature of the limitations and localization of productive zones in the biomass, which is generally obtainable through modeling and complex analytical methods such as oxygen microelectrode and histological investigations. Methods that combine physiological and morphological insight are crucial yet scarce for filamentous fungi. In this study, we used time-of-flight secondary ion mass spectrometry in combination with oxygen and glucose tracer substrates, requiring little effort for sample preparation and measurement. Our method is capable of analyzing oxygen and substrate uptake in various morphological structures by the use of 18O as a tracer. In parallel, we can assess productive biomass regions through identification of penicillin mass fragments to simultaneously study oxygen diffusion, substrate incorporation, and productive biomass sections.


Assuntos
Penicillium chrysogenum/metabolismo , Biomassa , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo , Penicilinas/metabolismo , Penicillium chrysogenum/crescimento & desenvolvimento , Espectrometria de Massa de Íon Secundário
14.
J Pharm Biomed Anal ; 179: 112998, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31780280

RESUMO

Gas-phase electrophoresis of single-charged analytes (nanoparticles) enables their separation according to the surface-dry particle size (Electrophoretic Mobility Diameter, EMD), which corresponds to the diameter of spherical shaped particles. Employing a nano Electrospray Differential Mobility Analyzer (nES DMA), also known as nES Gas-phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA), allows sizing/size-separation and determination of particle-number concentrations. Separations are based on a constant high laminar sheath flow and a tunable, orthogonal electric field enabling scanning of EMDs in the nanometer size range. Additionally, keeping the voltage constant, only nanoparticles of a given EMD pass the instrument and can be collected on corresponding supporting materials for subsequent nanoparticle analyses applying e.g. microscopic, immunologic or spectroscopic techniques. In our proof-of-concept study we now focus for the first time on mass spectrometric (MS) characterization of DMA size-selected material. We carried out size-selection of liposomes, vesicles consisting of a lipid bilayer and an aqueous lumen employed as carriers in e.g. pharmaceutic, cosmetic or nutritional applications. Particles of 85 nm EMD were collected on gold-coated silicon wafers. Subsequently, matrix was applied and Matrix-Assisted Laser Desorption / Ionization (MALDI) MS carried out. However, we not only focused on plain liposomes but also demonstrated the applicability of our approach for very heterogeneous low density lipoprotein (VLDL) particles, a transporter of lipid metabolism. Our novel offline hyphenation of gas-phase electrophoresis (termed nES DMA or nES GEMMA) and MALDI-MS opens the avenue to the molecular characterization of size-select nanoparticles of complex nature.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Lipoproteínas VLDL/análise , Lipossomos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Eletroforese/métodos , Nanopartículas , Tamanho da Partícula
15.
Org Biomol Chem ; 17(16): 4024-4030, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30949657

RESUMO

C-H alkylation reactions using short chain olefins as alkylating agents could be operationally simplified on the lab scale by using quaternary ammonium salts as precursors for these gaseous reagents: Hofmann elimination delivers in situ the desired alkenes with the advantage that the alkene concentration in the liquid phase is high. In case a catalytic system did not tolerate the conditions for Hofmann elimination, a very simple spatial separation of both reactions, Hofmann elimination and direct alkylation, was achieved to circumvent possible side reactions or catalyst deactivation. Additionally, the truly catalytically active species of a rhodium(i) mediated alkylation reaction could be identified by using this approach.

16.
Phytochem Anal ; 30(3): 346-356, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30644146

RESUMO

INTRODUCTION: Saffron stigmas from Crocus sativus L. (Iridaceae) are used as a drug in folk medicine, as a food additive and as a dying agent for at least 3500 years. Despite this long-term use the chemical composition of saffron seems still to be not fully known. OBJECTIVE: An analytical strategy for detailed investigations of aqueous saffron extract is developed based on reverse-phase high-performance liquid chromatography electrospray ionisation (HPLC-ESI) multistage mass spectrometry (MSn ) for crocins. METHODS: Commercially available stigmas are analysed by reverse-phase HPLC in combination with ESI/three-dimensional (3D)-ion trap mass spectrometry (MS) and MSn (n = 2 and 3). Sodium chloride is added to the analyte solution ready for injection to promote abundant [M + Na]+ adduct ions of crocins, being ideal precursor ions for low-energy collision-induced dissociation (CID)-MS2/3 . RESULTS: This strategy allows the detailed structural elucidation of known as well as previously unknown crocin derivatives (molecular mass of the aglycon, oligosaccharide chain length and linkage determination). The two isomeric trisaccharide substituents neapolitanose and gentiotriose are distinguished based on linkage-specific cross-ring cleavage for the first time. Furthermore, crocins containing up to six hexose units are also observed. Five novel crocin ester glycosides shifted by a mass difference of -40 Da indicate the presence of the here newly described C17 -aglycon, termed norcrocetin (crocetin = C20 ). CONCLUSIONS: These findings indicate the action of at least two different carotenoid cleavage dioxygenases (CCD2 and tentatively CCD4) during biosynthesis of this new bis-apocarotenoid aglycon (norcrocetin) and the existence of even higher glycosylated crocin derivatives at trace level.


Assuntos
Carotenoides/análise , Cromatografia Líquida de Alta Pressão/métodos , Crocus/química , Flores/química , Glicosídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Carotenoides/química , Ésteres/química , Glicosídeos/química
17.
Org Lett ; 21(4): 1116-1120, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30694683

RESUMO

An efficient synthesis of quinolines, pyrimidines, quinoxalines, pyrroles, and aminomethylated aromatic compounds catalyzed by a well-defined Re(I) PNP pincer complex is described. All reactions proceed with liberation of dihydrogen and elimination of water. Under optimized reaction conditions a wide range of organic functional groups are tolerated. This study demonstrates that rhenium catalysts are performing extremely well in dehydrogenative processes with considerably lower catalyst loadings and shorter reaction times when compared to analogous Mn(I) complexes.

18.
Eur J Mass Spectrom (Chichester) ; 25(3): 300-323, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30400753

RESUMO

The understanding of ageing mechanisms of antioxidants in base oils is indispensable for the development of improved lubricants. In this study, a novel artificial ageing method based on the application of peroxide as oxidant is presented for improved monitoring of thermo-oxidative degradation processes in combination with mass spectrometry. Model oils containing aminic and phenolic antioxidants were aged and chemical structures of their oxidation products were elucidated by ultrahigh performance liquid chromatography and electrospray ionization high resolution (Orbitrap) mass spectrometry. Additionally, synergistic mixtures of four antioxidants were investigated, because the formation of condensed molecules from amines and phenols would have a major influence on the antioxidant potential but could not be detected in the bulk lubricant.

19.
Rapid Commun Mass Spectrom ; 32(8): 649-656, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29420855

RESUMO

RATIONALE: We have developed a target system which enables the use of only one target (i.e. target preparation set) for three different laser desorption ionization (LDI)/matrix-assisted laser desorption ionization (MALDI) mass spectrometric instruments. The focus was on analysing small biomolecules with LDI for future use of the system for the study of meteorite samples (carbonaceous chondrites) using devices with different mass spectrometric performance characteristics. METHODS: Three compounds were selected due to their potential presence in meteoritic chondrites: tryptophan, 2-deoxy-d-ribose and triphenylene. They were prepared (with and without MALDI matrix, i.e. MALDI and LDI) and analysed with three different mass spectrometers (LinTOF/curved field RTOF, LinTOF/RTOF and QqRTOF). The ion sources of two of the instruments were run at high vacuum, and one at intermediate pressure. Two devices used a laser wavelength of 355 nm and one a wavelength of 337 nm. RESULTS: The developed target system operated smoothly with all devices. Tryptophan, 2-deoxy-d-ribose and triphenylene showed similar desorption/ionization behaviour for all instruments using the LDI mode. Interestingly, protonated tryptophan could be observed only with the LinTOF/curved field RTOF device in LDI and MALDI mode, while sodiated molecules were observed with all three instruments (in both ion modes). Deprotonated tryptophan was almost completely obscured by matrix ions in the MALDI mode whereas LDI yielded abundant deprotonated molecules. CONCLUSIONS: The presented target system allowed successful analyses of the three compounds using instruments from different vendors with only one preparation showing different analyser performance characteristics. The elemental composition with the QqRTOF analyser and the high-energy 20 keV collision-induced dissociation fragmentation will be important in identifying unknown compounds in chondrites.

20.
Eur J Inorg Chem ; 2018(7): 876-884, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31057330

RESUMO

The synthesis of cationic mono oxo MoIV PNP pincer complexes of the type [Mo(PNPMe-iPr)(O)X]+ (X = I, Br) from [Mo(PNPMe-iPr)(CO)X2] is described. These compounds are coordinatively unsaturated and feature a strong Mo≡O triple bond. The formation of these complexes proceeds via cationic 14e intermediates [Mo(PNPMe-iPr)(CO)X]+ and requires both molecular oxygen and water. ESI MS measurements with 18O labeled water (H2 18O) and molecular oxygen (18O2) indicates that water plays a crucial role in the formation of the Mo≡O bond. A plausible mechanism based on DFT calculations is provided. The X-ray structure of [Mo(PNPMe-iPr)(O)I]SbF6 is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA