Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Biotechnol Adv ; 40: 107520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31981600

RESUMO

Competitive sustainable production in industry demands new and better biocatalysts, optimized bioprocesses and cost-effective product recovery. Our review sheds light on the progress made for the individual steps towards these goals, starting with the discovery of new enzymes and their corresponding genes. The enzymes are subsequently engineered to improve their performance, combined in reaction cascades to expand the reaction scope and integrated in whole cells to provide an optimal environment for the bioconversion. Strain engineering using synthetic biology methods tunes the host for production, reaction design optimizes the reaction conditions and downstream processing ensures the efficient recovery of commercially viable products. Selected examples illustrate how modified enzymes can revolutionize future-oriented applications ranging from the bioproduction of bulk-, specialty- and fine chemicals, active pharmaceutical ingredients and carbohydrates, over the conversion of the greenhouse-gas CO2 into valuable products and biocontrol in agriculture, to recycling of synthetic polymers and recovery of precious metals.


Assuntos
Biologia Sintética , Biocatálise , Enzimas , Compostos Orgânicos
3.
Nat Commun ; 9(1): 4566, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374035

RESUMO

The original version of this Article was updated after publication to add the ORCID ID of the author Thomas Vogl, which was inadvertently omitted, and to include a corrected version of the 'Description of Additional Supplementary Files' which originally lacked legends for each file.

4.
Nat Commun ; 9(1): 3589, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181586

RESUMO

Numerous synthetic biology endeavors require well-tuned co-expression of functional components for success. Classically, monodirectional promoters (MDPs) have been used for such applications, but MDPs are limited in terms of multi-gene co-expression capabilities. Consequently, there is a pressing need for new tools with improved flexibility in terms of genetic circuit design, metabolic pathway assembly, and optimization. Here, motivated by nature's use of bidirectional promoters (BDPs) as a solution for efficient gene co-expression, we generate a library of 168 synthetic BDPs in the yeast Komagataella phaffii (syn. Pichia pastoris), leveraging naturally occurring BDPs as a parts repository. This library of synthetic BDPs allows for rapid screening of diverse expression profiles and ratios to optimize gene co-expression, including for metabolic pathways (taxadiene, ß-carotene). The modular design strategies applied for creating the BDP library could be relevant in other eukaryotic hosts, enabling a myriad of metabolic engineering and synthetic biology applications.


Assuntos
Engenharia Genética/métodos , Pichia/genética , Regiões Promotoras Genéticas , Alcenos/metabolismo , Citocromo P-450 CYP2D6/genética , Diterpenos/metabolismo , Farnesiltranstransferase/genética , Regulação Fúngica da Expressão Gênica , Histonas/genética , Microrganismos Geneticamente Modificados , Pichia/metabolismo , beta Caroteno/genética , beta Caroteno/metabolismo
5.
J Biotechnol ; 235: 32-46, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-26995609

RESUMO

Amides are widespread in biologically active compounds with a broad range of applications in biotechnology, agriculture and medicine. Therefore, as alternative to chemical synthesis the biocatalytic amide synthesis is a very interesting field of research. As usual, Nature can serve as guide in the quest for novel biocatalysts. Several mechanisms for carboxylate activation involving mainly acyl-adenylate, acyl-phosphate or acyl-enzyme intermediates have been discovered, but also completely different pathways to amides are found. In addition to ribosomes, selected enzymes of almost all main enzyme classes are able to synthesize amides. In this review we give an overview about amide synthesis in Nature, as well as biotechnological applications of these enzymes. Moreover, several examples of biocatalytic amide synthesis are given.


Assuntos
Amidas , Biocatálise , Biotecnologia , Trifosfato de Adenosina , Hidrolases , Peptidil Transferases
6.
ACS Synth Biol ; 5(2): 172-86, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26592304

RESUMO

The heterologous expression of biosynthetic pathways for pharmaceutical or fine chemical production requires suitable expression hosts and vectors. In eukaryotes, the pathway flux is typically balanced by stoichiometric fine-tuning of reaction steps by varying the transcript levels of the genes involved. Regulated (inducible) promoters are desirable to allow a separation of pathway expression from cell growth. Ideally, the promoter sequences used should not be identical to avoid loss by recombination. The methylotrophic yeast Pichia pastoris is a commonly used protein production host, and single genes have been expressed at high levels using the methanol-inducible, strong, and tightly regulated promoter of the alcohol oxidase 1 gene (PAOX1). Here, we have studied the regulation of the P. pastoris methanol utilization (MUT) pathway to identify a useful set of promoters that (i) allow high coexpression and (ii) differ in DNA sequence to increase genetic stability. We noticed a pronounced involvement of the pentose phosphate pathway (PPP) and genes involved in the defense of reactive oxygen species (ROS), providing strong promoters that, in part, even outperform PAOX1 and offer novel regulatory profiles. We have applied these tightly regulated promoters together with novel terminators as useful tools for the expression of a heterologous biosynthetic pathway. With the synthetic biology toolbox presented here, P. pastoris is now equipped with one of the largest sets of strong and co-regulated promoters of any microbe, moving it from a protein production host to a general industrial biotechnology host.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Metanol/farmacocinética , Pichia , Regiões Promotoras Genéticas , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
7.
Org Biomol Chem ; 12(23): 4013-20, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24809278

RESUMO

Mutation of the sesquiterpene synthase Cop2 was conducted with a high-throughput screen for the cyclization activity using a non-natural substrate. A mutant of Cop2 was identified that contained three amino acid substitutions. This mutant, 17H2, converted the natural substrate FPP into germacrene D-4-ol with 77% selectivity. This selectivity is in contrast to that of the parent enzyme in which germacrene D-4-ol is produced as 29% and α-cadinol is produced as 46% of the product mixture. The mutations were shown to each contribute to this selectivity, and a homology model suggested that the mutations lie near to the active site though would be unlikely to be targeted for mutation by rational methods. Kinetic comparisons show that 17H2 maintains a kcat/KM of 0.62 mM(-1) s(-1), which is nearly identical to that of the parent Cop2, which had a kcat/KM of 0.58 mM(-1) s(-1).


Assuntos
Alquil e Aril Transferases/metabolismo , Coprinus/enzimologia , Engenharia de Proteínas , Alquil e Aril Transferases/química , Sequência de Aminoácidos , Biocatálise , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Alinhamento de Sequência , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
8.
ACS Synth Biol ; 3(3): 188-91, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24187969

RESUMO

Synthetic promoters are commonly used tools for circuit design or high level protein production. Promoter engineering efforts in yeasts, such as Saccharomyces cerevisiae and Pichia pastoris have mostly been focused on altering upstream regulatory sequences such as transcription factor binding sites. In higher eukaryotes synthetic core promoters, directly needed for transcription initiation by RNA Polymerase II, have been successfully designed. Here we report the first synthetic yeast core promoter for P. pastoris, based on natural yeast core promoters. Furthermore we used this synthetic core promoter sequence to engineer the core promoter of the natural AOX1 promoter, thereby creating a set of core promoters providing a range of different expression levels. As opposed to engineering strategies of the significantly longer entire promoter, such short core promoters can directly be added on a PCR primer facilitating library generation and are sufficient to obtain variable expression yields.


Assuntos
Genes Fúngicos/genética , Engenharia Genética/métodos , Pichia/genética , Regiões Promotoras Genéticas/genética , Biologia Sintética/métodos , Sequência de Bases , Dados de Sequência Molecular , Alinhamento de Sequência
9.
Chemistry ; 19(12): 4030-5, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23341101

RESUMO

Various artificial network designs that involve biocatalysts were tested for the asymmetric amination of sec-alcohols to the corresponding α-chiral primary amines. The artificial systems tested involved three to five redox enzymes and were exemplary of a range of different sec-alcohol substrates. Alcohols were oxidised to the corresponding ketone by an alcohol dehydrogenase. The ketones were subsequently aminated by employing a ω-transaminase. Of special interest were redox-neutral designs in which the hydride abstracted in the oxidation step was reused in the amination step of the cascade. Under optimised conditions up to 91 % conversion of an alcohol to the amine was achieved.


Assuntos
Álcoois/química , Aminas/síntese química , Aminação , Oxirredução , Estereoisomerismo
10.
FEBS J ; 279(23): 4374-84, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23061549

RESUMO

A highly enantioselective and stereoselective secondary alkylsulfatase from Pseudomonas sp. DSM6611 (Pisa1) was heterologously expressed in Escherichia coli BL21, and purified to homogeneity for kinetic and structural studies. Structure determination of Pisa1 by X-ray crystallography showed that the protein belongs to the family of metallo-ß-lactamases with a conserved binuclear Zn(2+) cluster in the active site. In contrast to a closely related alkylsulfatase from Pseudomonas aeruginosa (SdsA1), Pisa1 showed a preference for secondary rather than primary alkyl sulfates, and enantioselectively hydrolyzed the (R)-enantiomer of rac-2-octyl sulfate, yielding (S)-2-octanol with inversion of absolute configuration as a result of C-O bond cleavage. In order to elucidate the mechanism of inverting sulfate ester hydrolysis, for which no counterpart in chemical catalysis exists, we designed variants of Pisa1 guided by three-dimensional structure and docking experiments. In the course of these studies, we identified an invariant histidine (His317) near the sulfate-binding site as the general acid for crucial protonation of the sulfate leaving group. Additionally, amino acid replacements in the alkyl chain-binding pocket generated an enzyme variant that lost its stereoselectivity towards rac-2-octyl sulfate. These findings are discussed in light of the potential use of this enzyme family for applications in biocatalysis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Pseudomonas/enzimologia , Sulfatases/química , Sulfatases/metabolismo , Sulfatos/metabolismo , Cristalografia por Raios X , Cinética , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA