Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
FEBS J ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840471

RESUMO

Autophagy dysfunction has been closely related with pathogenesis of many neurodegenerative diseases and therefore represents a potential therapeutic target. Extracellular vesicles (EVs) may act as potent anti-inflammatory agents and also modulators of autophagy in target cells. However, the molecular mechanisms by which EVs modulate autophagy flux in human microglia remain largely unexplored. In the present study, we investigated the effects of EVs derived from human oral mucosa stem cells on the autophagy in human microglia. We demonstrate that EVs promoted autophagy and autophagic flux in human microglia and that this process was dependent on the integrity of lipid rafts. Lipopolysaccharide (LPS) also activated autophagy, but combined treatment with EVs and LPS suppressed autophagy response, indicating interference between these signaling pathways. Blockage of Toll-like receptor 4 (TLR4) with anti-TLR4 antibody suppressed EV-induced autophagy. Furthermore, inhibition of the EV-associated heat shock protein (HSP70) chaperone which is one of the endogenous ligands of the TLR4 also suppressed EV-induced lipid raft formation and autophagy. Pre-treatment of microglia with a selective inhibitor of αvß3/αvß5 integrins cilengitide inhibited EV-induced autophagy. Finally, blockage of purinergic P2X4 receptor (P2X4R) with selective inhibitor 5-BDBD also suppressed EV-induced autophagy. In conclusion, we demonstrate that EVs activate autophagy in human microglia through interaction with HSP70/TLR4, αVß3/αVß5, and P2X4R signaling pathways and that these effects depend on the integrity of lipid rafts. Our findings could be used to develop new therapeutic strategies targeting disease-associated microglia.

2.
Function (Oxf) ; 5(2): zqae002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486975

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 instigated the most serious global health crisis. Clinical presentation of COVID-19 frequently includes severe neurological and neuropsychiatric symptoms. However, it is presently unknown whether and to which extent pathological impairment of blood-brain barrier (BBB) contributes to the development of neuropathology during COVID-19 progression. In the present study, we used human induced pluripotent stem cells-derived brain endothelial cells (iBECs) to study the effects of blood plasma derived from COVID-19 patients on the BBB integrity in vitro. We also performed a comprehensive analysis of the cytokine and chemokine profiles in the plasma of COVID-19 patients, healthy and recovered individuals. We found significantly increased levels of interferon γ-induced protein 10 kDa, hepatocyte growth factor, and interleukin-18 in the plasma of COVID-19 patients. However, blood plasma from COVID-19 patients did not affect transendothelial electrical resistance in iBEC monolayers. Our results demonstrate that COVID-19-associated blood plasma inflammatory factors do not affect BBB paracellular pathway directly and suggest that pathological remodeling (if any) of BBB during COVID-19 may occur through indirect or yet unknown mechanisms.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , Barreira Hematoencefálica , Células Endoteliais , Impedância Elétrica
3.
Cell Biol Int ; 48(3): 358-368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100213

RESUMO

Targeting of disease-associated microglia represents a promising therapeutic approach that can be used for the prevention or slowing down neurodegeneration. In this regard, the use of extracellular vesicles (EVs) represents a promising therapeutic approach. However, the molecular mechanisms by which EVs regulate microglial responses remain poorly understood. In the present study, we used EVs derived from human oral mucosa stem cells (OMSCs) to investigate the effects on the lipid raft formation and the phagocytic response of human microglial cells. Lipid raft labeling with fluorescent cholera toxin subunit B conjugates revealed that both EVs and lipopolysaccharide (LPS) by more than two times increased lipid raft formation in human microglia. By contrast, combined treatment with LPS and EVs significantly decreased lipid raft formation indicating possible interference of EVs with the process of LPS-induced lipid raft formation. Specific inhibition of Toll-like receptor 4 (TLR4) with anti-TLR4 antibody as well as inhibition of purinergic P2X4 receptor (P2X4R) with selective antagonist 5-BDBD inhibited EVs- and LPS-induced lipid raft formation. Selective blockage of αvß3/αvß5 integrins with cilengitide suppressed EV- and LPS-induced lipid raft formation in microglia. Furthermore, inhibition of TLR4 and P2X4R prevented EV-induced phagocytic activity of human microglial cells. We demonstrate that EVs induce lipid raft formation in human microglia through interaction with TLR4, P2X4R, and αVß3/αVß5 signaling pathways. Our results provide new insights about the molecular mechanisms regulating EV/microglia interactions and could be used for the development of new therapeutic strategies against neurological disorders.


Assuntos
Vesículas Extracelulares , Microglia , Humanos , Microglia/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Mucosa Bucal/metabolismo , Transdução de Sinais , Vesículas Extracelulares/metabolismo , Células-Tronco/metabolismo , Microdomínios da Membrana/metabolismo
4.
Neurobiol Dis ; 179: 106054, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842485

RESUMO

Nervous system is segregated from the body by the complex system of barriers. The CNS is protected by (i) the blood-brain and blood-spinal cord barrier between the intracerebral and intraspinal blood vessels and the brain parenchyma; (ii) the arachnoid blood-cerebrospinal fluid barrier; (iii) the blood-cerebrospinal barrier of circumventricular organs made by tanycytes and (iv) the choroid plexus blood-CSF barrier formed by choroid ependymocytes. In the peripheral nervous system the nerve-blood barrier is secured by tight junctions between specialised glial cells known as perineural cells. In the CNS astroglia contribute to all barriers through the glia limitans, which represent the parenchymal portion of the barrier system. Astroglia through secretion of various paracrine factors regulate the permeability of endothelial vascular barrier; in pathology damage or asthenia of astrocytes may compromise brain barriers integrity.


Assuntos
Astrócitos , Encéfalo , Astrócitos/patologia , Encéfalo/fisiologia , Barreira Hematoencefálica/fisiologia , Neuroglia , Junções Íntimas , Plexo Corióideo
5.
Neurochem Res ; 48(4): 1211-1221, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35859077

RESUMO

Multiple paracrine factors are implicated in the regulation of barrier properties of human brain endothelial cells (BECs) in different physiologic and pathologic settings. We have recently demonstrated that autocrine secretion of basic fibroblast growth factor (bFGF) by BECs is necessary for the establishment of endothelial barrier (as demonstrated by high trans-endothelial electric resistance, TEER), whereas exogenous bFGF inhibits TEER in a concentration-dependent manner. In the present study we analysed the contribution of MAPK/ERK and STAT3 signalling pathways to the inhibitory effects of exogenous bFGF. Treatment with bFGF (8 ng/ml) for 3 days increased phosphorylation of ERK1/2 and STAT3. Treatment with FGF receptor 1 (FGFR1) inhibitor PD173074 (15 µM) suppressed both basal and bFGF-induced activation of ERK1/2 and STAT3. Suppression of STAT signalling with Janus kinase inhibitor JAKi (15 nM) alone or in the presence of bFGF did not change TEER in BEC monolayers. Exposure to JAKi affected neither proliferation, nor expression and distribution of tight junction (TJ) proteins claudin-5, occludin and zonula occludens-1 (ZO-1). In contrast, treatment with MEK 1/2 inhibitor U0126 (10 µM) partially neutralised inhibitory effect of bFGF thus increasing TEER, whereas U0126 alone did not affect resistance of endothelial barrier. Our findings demonstrate that MAPK/ERK signalling pathway does not affect autocrine bFGF signalling-dependent BECs barrier function but is largely responsible for the disruptive effects of the exogenous bFGF. We speculate that bFGF may (depending on concentration and possibly origin) dynamically regulate permeability of the endothelial blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Fator 2 de Crescimento de Fibroblastos , Humanos , Barreira Hematoencefálica/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais/metabolismo , Butadienos/farmacologia , Proteínas de Junções Íntimas/metabolismo
6.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055039

RESUMO

From the first success in cultivation of cells in vitro, it became clear that developing cell and/or tissue specific cultures would open a myriad of new opportunities for medical research. Expertise in various in vitro models has been developing over decades, so nowadays we benefit from highly specific in vitro systems imitating every organ of the human body. Moreover, obtaining sufficient number of standardized cells allows for cell transplantation approach with the goal of improving the regeneration of injured/disease affected tissue. However, different cell types bring different needs and place various types of hurdles on the path of regenerative neurology and regenerative cardiology. In this review, written by European experts gathered in Cost European action dedicated to neurology and cardiology-Bioneca, we present the experience acquired by working on two rather different organs: the brain and the heart. When taken into account that diseases of these two organs, mostly ischemic in their nature (stroke and heart infarction), bring by far the largest burden of the medical systems around Europe, it is not surprising that in vitro models of nervous and heart muscle tissue were in the focus of biomedical research in the last decades. In this review we describe and discuss hurdles which still impair further progress of regenerative neurology and cardiology and we detect those ones which are common to both fields and some, which are field-specific. With the goal to elucidate strategies which might be shared between regenerative neurology and cardiology we discuss methodological solutions which can help each of the fields to accelerate their development.


Assuntos
Regeneração Tecidual Guiada , Miocárdio , Regeneração Nervosa , Medicina Regenerativa , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Encefalopatias/diagnóstico , Encefalopatias/etiologia , Encefalopatias/terapia , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Gerenciamento Clínico , Vesículas Extracelulares/metabolismo , Regeneração Tecidual Guiada/métodos , Cardiopatias/diagnóstico , Cardiopatias/etiologia , Cardiopatias/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Organoides , Medicina Regenerativa/métodos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo
7.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681627

RESUMO

Extracellular vesicles (EVs) effectively suppress neuroinflammation and induce neuroprotective effects in different disease models. However, the mechanisms by which EVs regulate the neuroinflammatory response of microglia remains largely unexplored. Here, we addressed this issue by testing the action of EVs derived from human exfoliated deciduous teeth stem cells (SHEDs) on immortalized human microglial cells. We found that EVs induced a rapid increase in intracellular Ca2+ and promoted significant ATP release in microglial cells after 20 min of treatment. Boyden chamber assays revealed that EVs promoted microglial migration by 20%. Pharmacological inhibition of different subtypes of purinergic receptors demonstrated that EVs activated microglial migration preferentially through the P2X4 receptor (P2X4R) pathway. Proximity ligation and co-immunoprecipitation assays revealed that EVs promote association between milk fat globule-epidermal growth factor-factor VIII (MFG-E8) and P2X4R proteins. Furthermore, pharmacological inhibition of αVß3/αVß5 integrin suppressed EV-induced cell migration and formation of lipid rafts in microglia. These results demonstrate that EVs promote microglial motility through P2X4R/MFG-E8-dependent mechanisms. Our findings provide novel insights into the molecular mechanisms through which EVs target human microglia that may be exploited for the development of new therapeutic strategies targeting disease-associated neuroinflammation.


Assuntos
Trifosfato de Adenosina/metabolismo , Antígenos de Superfície/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas do Leite/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Cálcio/metabolismo , Movimento Celular , Células Cultivadas , Polpa Dentária/citologia , Vesículas Extracelulares/transplante , Humanos , Microglia/citologia , Microglia/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
8.
Int Immunopharmacol ; 101(Pt A): 108262, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34688135

RESUMO

miR-124 is ubiquitously expressed in the nervous tissue and acts as a negative regulator of neuroinflammation. In the present study, we analyzed the possible role of miR-124 in response to LPS in the human microglial cell line. Our data revealed that the miR-124 anti-inflammatory effect is based not only on the suppression of MyD88 - NFκB pathway and downregulation of pro-inflammatory cytokines IL-1ß and IL-6 but also on the enhancement of TRAM-TRIF signaling and increased IFN-ß expression. Furthermore, the NFκB reporter assay demonstrated that specific miR-124 - induced NFκB activity changes could be detected only using NFκB reporter promoters lacking ATF/CREB binding site.


Assuntos
Interferon beta/genética , MicroRNAs/metabolismo , Microglia/imunologia , Linhagem Celular , Humanos , Interferon beta/metabolismo , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , MicroRNAs/agonistas , Microglia/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
9.
J Cell Physiol ; 236(11): 7642-7654, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33959949

RESUMO

Multiple paracrine factors regulate the barrier properties of human brain capillary endothelial cells (BCECs). Understanding the precise mode of action of these factors remains a challenging task, because of the limited availability of functionally competent BCECs and the use of serum-containing medium. In the present study, we employed a defined protocol for producing BCECs from human inducible pluripotent stem cells. We found that autocrine secretion of basic fibroblast growth factor (bFGF) is necessary for the establishment a tight BCECs barrier, as revealed by measurements of transendothelial electric resistance (TEER). In contrast, addition of exogenous bFGF in concentrations higher than 4 ng/ml inhibited TEER in a concentration-dependent manner. Exogenous bFGF did not significantly affect expression and distribution of tight junction proteins claudin-5, occludin and zonula occludens (ZO)-1. Treatment with FGF receptor blocker PD173074 (15 µM) suppressed inhibitory effects of bFGF and induced nuclear translocation of protein ZO-1. Inhibition of phosphoinositide 3-Kinase (PI-3K) with LY294002 (25 µM) significantly potentiated an inhibitory effect of bFGF on TEER indicating that PI-3K signalling pathway counteracts bFGF modulation of TEER. In conclusion, we show that autocrine bFGF secretion is necessary for the proper barrier function of BCECs, whereas exogenous bFGF in higher doses suppresses barrier resistance. Our findings demonstrate a dual role for bFGF in the regulation of BCEC barrier function.


Assuntos
Encéfalo/irrigação sanguínea , Capilares/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Comunicação Autócrina , Capilares/metabolismo , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Impedância Elétrica , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Permeabilidade , Fosfatidilinositol 3-Quinase/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/agonistas , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
10.
Neurochem Res ; 46(10): 2538-2550, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33961207

RESUMO

The evolution of blood-brain barrier paralleled centralisation of the nervous system: emergence of neuronal masses required control over composition of the interstitial fluids. The barriers were initially created by glial cells, which employed septate junctions to restrict paracellular diffusion in the invertebrates and tight junctions in some early vertebrates. The endothelial barrier, secured by tight and adherent junctions emerged in vertebrates and is common in mammals. Astrocytes form the parenchymal part of the blood-brain barrier and commutate with endothelial cells through secretion of growth factors, morphogens and extracellular vesicles. These secreted factors control the integrity of the blood-brain barrier through regulation of expression of tight junction proteins. The astrocyte-endotheliocyte communications are particularly important in various neurological diseases associated with impairments to the blood-brain barrier. Molecular mechanisms supporting astrocyte-endotheliocyte axis in health and disease are in need of detailed characterisation.


Assuntos
Astrócitos/fisiologia , Barreira Hematoencefálica/fisiologia , Células Endoteliais/fisiologia , Animais , Vesículas Extracelulares/fisiologia , Humanos , Proteínas de Membrana Transportadoras/fisiologia , Junções Íntimas/fisiologia
11.
Cell Mol Neurobiol ; 41(3): 551-562, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32440709

RESUMO

Impairments of the blood-brain barrier (BBB) and vascular dysfunction contribute to Alzheimer's disease (AD) from the earliest stages. However, the influence of AD-affected astrocytes on the BBB remain largely unexplored. In the present study, we created an in vitro BBB using human-immortalized endothelial cells in combination with immortalized astroglial cell lines from the hippocampus of 3xTG-AD and wild-type mice (3Tg-iAstro and WT-iAstro, respectively). We found that co-culturing endothelial monolayers with WT-iAstro upregulates expression of endothelial tight junction proteins (claudin-5, occludin, ZO-1) and increases the trans-endothelial electrical resistance (TEER). In contrast, co-culturing with 3Tg-iAstro does not affect expression of tight junction proteins and does not change the TEER of endothelial monolayers. The same in vitro model has been used to evaluate the effects of extracellular vesicles (EVs) derived from the WT-iAstro and 3Tg-iAstro. The EVs derived from WT-iAstro increased TEER and upregulated expression of tight junction proteins, whereas EVs from 3Tg-iAstro were ineffective. In conclusion, we show for the first time that immortalized hippocampal astrocytes from 3xTG-AD mice exhibit impaired capacity to support BBB integrity in vitro through paracrine mechanisms and may represent an important factor underlying vascular abnormalities during development of AD.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/metabolismo , Barreira Hematoencefálica/patologia , Comunicação Celular , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Hipocampo/patologia , Neuroglia/metabolismo , Doença de Alzheimer/genética , Animais , Astrócitos/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Meios de Cultivo Condicionados/farmacologia , Impedância Elétrica , Células Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Humanos , Camundongos Transgênicos , Neuroglia/efeitos dos fármacos , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Regulação para Cima/genética
12.
Cell Mol Neurobiol ; 41(3): 605-613, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32410106

RESUMO

We have recently demonstrated that extracellular vesicles (EVs) derived from the human teeth stem cells improve motor symptoms and normalize tyrosine hydroxylase (TH) expression in the nigrostriatal structures of Parkinson's disease (PD) model rats obtained by 6-hydroxydopamine (6-OHDA) unilateral injection into the medial forebrain bundle (MFB). The aim of this study was to clarify: (1) how long therapeutic effects persist after discontinuation of 17-day intranasal administration of EVs in 6-OHDA rats; (2) may EVs reverse cognitive (learning/memory) dysfunction in these PD model rats; (3) whether and how the behavioral improvement may be related to the expression of TH and Nissl bodies count in the nigrostriatal structures. Our results demonstrated that in 6-OHDA rats, gait was normalized even ten days after discontinuation of EVs administration. EVs successfully reversed 6-OHDA-induced impairment in spatial learning/memory performance; however, the beneficial effect was shorter (up to post-treatment day 6) than that revealed for gait improvement. The shorter effect of EVs coincided with both full normalization of TH expression and Nissl bodies count in the nigrostriatal structures, while slight but significant increase in the 6-OHDA-decreased Nissl count persisted in the substantia nigra even on the post-treatment day 20, supposedly due to the continuation of protein synthesis in the living cells. The obtained data indicate the usefulness of further studies to find the optimal administration regimen which could be translated into clinical trials on PD patients, as well as to clarify other-apart from dopaminergic-neuromodulatory pathways involved in the EVs mechanism of action.


Assuntos
Vesículas Extracelulares/metabolismo , Marcha , Memória , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Administração Intranasal , Animais , Comportamento Animal , Criança , Corpo Estriado/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Masculino , Corpos de Nissl/metabolismo , Oxidopamina , Doença de Parkinson/patologia , Ratos Wistar , Substância Negra/patologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Pflugers Arch ; 473(5): 753-774, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32979108

RESUMO

Astroglia represent a class of heterogeneous, in form and function, cells known as astrocytes, which provide for homoeostasis and defence of the central nervous system (CNS). Ageing is associated with morphological and functional remodelling of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is associated with (i) decrease in astroglial synaptic coverage, (ii) deficits in glutamate and potassium clearance, (iii) reduced astroglial synthesis of synaptogenic factors such as cholesterol, (iv) decrease in aquaporin 4 channels in astroglial endfeet with subsequent decline in the glymphatic clearance, (v) decrease in astroglial metabolic support through the lactate shuttle, (vi) dwindling adult neurogenesis resulting from diminished proliferative capacity of radial stem astrocytes, (vii) decline in the astroglial-vascular coupling and deficient blood-brain barrier and (viii) decrease in astroglial ability to mount reactive astrogliosis. Decrease in reactive capabilities of astroglia are associated with rise of age-dependent neurodegenerative diseases. Astroglial morphology and function can be influenced and improved by lifestyle interventions such as intellectual engagement, social interactions, physical exercise, caloric restriction and healthy diet. These modifications of lifestyle are paramount for cognitive longevity.


Assuntos
Envelhecimento/patologia , Astenia/patologia , Astrócitos/metabolismo , Encéfalo/fisiologia , Animais , Astrócitos/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Senescência Celular , Humanos
15.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962107

RESUMO

Extracellular vesicles (EVs) have recently attracted a great deal of interest as they may represent a new biosignaling paradigm. According to the mode of biogenesis, size and composition, two broad categories of EVs have been described, exosomes and microvesicles. EVs have been shown to carry cargoes of signaling proteins, RNA species, DNA and lipids. Once released, their content is selectively taken up by near or distant target cells, influencing their behavior. Exosomes are involved in cell-cell communication in a wide range of embryonic developmental processes and in fetal-maternal communication. In the present review, an outline of the role of EVs in neural development, regeneration and diseases is presented. EVs can act as regulators of normal homeostasis, but they can also promote either neuroinflammation/degeneration or tissue repair in pathological conditions, depending on their content. Since EV molecular cargo constitutes a representation of the origin cell status, EVs can be exploited in the diagnosis of several diseases. Due to their capability to cross the blood-brain barrier (BBB), EVs not only have been suggested for the diagnosis of central nervous system disorders by means of minimally invasive procedures, i.e., "liquid biopsies", but they are also considered attractive tools for targeted drug delivery across the BBB. From the therapeutic perspective, mesenchymal stem cells (MSCs) represent one of the most promising sources of EVs. In particular, the neuroprotective properties of MSCs derived from the dental pulp are here discussed.


Assuntos
Axônios/metabolismo , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Doenças do Sistema Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Barreira Hematoencefálica/metabolismo , Comunicação Celular , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/prevenção & controle , Células-Tronco Neurais/citologia , Placenta/metabolismo , Gravidez , Regeneração/genética
16.
Pflugers Arch ; 471(10): 1247-1261, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31520182

RESUMO

Astrocytes, a class of morphologically and functionally diverse primary homeostatic neuroglia, are key keepers of neural tissue homeostasis and fundamental contributors to brain defence in pathological contexts. Failure of astroglial support and defence facilitate the evolution of neurological diseases, which often results in aberrant synaptic transmission, neurodegeneration and death of neurones. In Alzheimer's disease (AD), astrocytes undergo complex and multifaceted metamorphoses ranging from atrophy with loss of function to reactive astrogliosis with hypertrophy. Astroglial asthenia underlies reduced homeostatic support and neuroprotection that may account for impaired synaptic transmission and neuronal demise. Reactive astrogliosis which mainly develops in astrocytes associated with senile plaque is prominent at the early to moderate stages of AD manifested by mild cognitive impairment; downregulation of astrogliosis (reflecting astroglial paralysis) is associated with late stages of the disease characterised by severe dementia. Cell-specific therapies aimed at boosting astroglial supportive and defensive capabilities and preventing astroglial paralysis may offer new directions in preventing, arresting, or even curing AD-linked neurodegeneration.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/patologia , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Humanos
17.
Stem Cells Dev ; 28(15): 1037-1049, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31017040

RESUMO

Periodontitis is an infectious disease characterized by chronic inflammation and progressive destruction of periodontal tissues. Chronic inflammatory environment may affect immunomodulatory function of periodontal ligament stem cells (PDLSCs) and promote shift toward proinflammatory phenotype contributing to propagation of periodontitis. Therefore, suppression of inflammatory response in PDLSCs represents a novel therapeutic approach. Extracellular vesicles (EVs) have been shown to display anti-inflammatory and immunosuppressive actions in different tissues and could represent a potent therapeutic tools against chronic inflammation during periodontitis. In the present study, we investigated the effects of EVs on the basal and lipopolysaccharide (LPS)-induced activity of NFκB signaling pathway in PDLSCs. We also examined the impact of EVs on the osteogenic differentiation and expression of osteogenesis-related genes. EVs were purified by differential ultracentrifugation from PDLSCs grown on gelatin-coated alginate microcarriers in a bioreactor. NFκB reporter assays demonstrated that EVs permanently suppressed basal and LPS-induced activity of NFκB in PDLSCs. Combined treatment with EVs and anti-TLR4 antibody (Ab) resulted in attenuation of the inhibitory effect on the NFκB activity, suggesting a possible interference through a competition for TLR4 signaling pathway. EVs also increased phosphorylation of Akt and its downstream target GSK3ß (Ser 9) indicating that PI3K/Akt signaling pathway may act as suppressor of NFκB activity. LPS stimulated osteogenic mineralization of PDLSCs. Unexpectedly, anti-TLR4 blocking Ab per se significantly decreased osteogenic mineralization of PDLSCs. EVs did not affect osteogenic mineralization, but partially suppressed inhibitory effect of anti-TLR4 blocking Ab. Gene expression studies revealed significant effects of EVs on osteogenesis-related genes and possible interference with TLR4 signaling in PDLSCs. In conclusion, our study demonstrates that EVs suppress basal and LPS-induced activity of NFκB signaling pathway in PDLSCs and could potentially be used for targeting of chronic inflammation during periodontitis.


Assuntos
Vesículas Extracelulares/fisiologia , NF-kappa B/metabolismo , Ligamento Periodontal/metabolismo , Periodontite/prevenção & controle , Células-Tronco/metabolismo , Adolescente , Adulto , Células Cultivadas , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Osteogênese/fisiologia , Ligamento Periodontal/citologia , Periodontite/induzido quimicamente , Periodontite/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/fisiologia , Adulto Jovem
18.
Stem Cells Transl Med ; 8(5): 490-499, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30706999

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting millions of people worldwide. At present, there is no effective cure for PD; treatments are symptomatic and do not halt progression of neurodegeneration. Extracellular vesicles (EVs) can cross the blood-brain barrier and represent promising alternative to the classical treatment strategies. In the present study, we examined therapeutic effects of intranasal administration of EVs derived from human exfoliated deciduous teeth stem cells (SHEDs) on unilateral 6-hydroxydopamine (6-OHDA) medial forebrain bundle (MFB) rat model of PD. CatWalk gait tests revealed that EVs effectively suppressed 6-OHDA-induced gait impairments. All tested gait parameters (stand, stride length, step cycle, and duty cycle) were significantly improved in EV-treated animals when compared with 6-OHDA-lesion group rats. Furthermore, EVs slowed down numbers of 6-OHDA-induced contralateral rotations in apomorphine test. Improvements in motor function correlated with normalization of tyrosine hydroxylase expression in the striatum and substantia nigra. In conclusion, we demonstrated, for the first time, the therapeutic efficacy of intranasal administration of EVs derived from SHEDs in a rat model of PD induced by 6-OHDA intra-MFB lesion. Our findings could be potentially exploited for the development of new treatment strategies against PD.


Assuntos
Administração Intranasal/métodos , Vesículas Extracelulares/metabolismo , Microscopia Eletrônica de Transmissão/métodos , Oxidopamina/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Células-Tronco/metabolismo , Dente/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismo , Idoso , Animais , Corpo Estriado/patologia , Modelos Animais de Doenças , Humanos , Masculino , Oxidopamina/farmacologia , Doença de Parkinson/patologia , Ratos , Ratos Wistar , Substância Negra/patologia
19.
J Tissue Eng Regen Med ; 13(2): 309-318, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30650469

RESUMO

Functional impairments of microglia have been recently associated with several neurological conditions. Therefore, modulation of anti-inflammatory and phagocytic properties of microglial cells could represent a novel therapeutic approach. In the present study, we investigated the effects of extracellular vesicles (EVs) derived from stem cells from the dental pulp of human exfoliated deciduous teeth (SHEDs) on the inflammatory response and functional properties of immortalized human microglial cells. NFκB reporter assays demonstrated that EVs suppressed LPS-induced activation of NFκB signalling pathway in human microglial cells. The effect was similar to that obtained with anti-TLR4 blocking antibody. We also show that EVs differentially affected phagocytic activity of unpolarized (M0) and polarized (M1 and M2) microglial cells. EVs induced significant upregulation of phagocytic activity in M0 cells (by 39%), slight decrease in M1 cells, and moderate increase (by 21%) in M2 cells. The Seahorse XF Glycolysis Stress Test revealed that EVs induced an immediate and sustained increase of glycolytic activity in M0, M1, and M2 cells. Interestingly, EVs acted in an inverse dose-dependent manner. These findings indicate that EVs can induce glycolytic reprogramming of unpolarized and polarized human microglial cells. In conclusion, our pilot study demonstrates that EVs derived from SHEDs can act as a potent immunomodulators of human microglial cells. These findings could be potentially exploited for the development of new therapeutic strategies targeting neuroinflammatory microglia.


Assuntos
Polpa Dentária/imunologia , Vesículas Extracelulares/imunologia , Fatores Imunológicos , Microglia/imunologia , Células-Tronco/imunologia , Dente Decíduo/imunologia , Linhagem Celular Transformada , Polpa Dentária/citologia , Humanos , Microglia/citologia , Células-Tronco/citologia , Dente Decíduo/citologia
20.
Expert Opin Biol Ther ; 18(8): 865-881, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30025485

RESUMO

INTRODUCTION: Amyotrophic Lateral Sclerosis (ALS) is a progressive, incurable neurodegenerative disease that targets motoneurons. Cell-based therapies have generated widespread interest as a potential therapeutic approach but no conclusive results have yet been reported either from pre-clinical or clinical studies. AREAS COVERED: This is an integrated review of pre-clinical and clinical studies focused on the development of cell-based therapies for ALS. We analyze the biology of stem cell treatments and results obtained from pre-clinical models of ALS and examine the methods and the results obtained to date from clinical trials. We discuss scientific, clinical, and ethical issues and propose some directions for future studies. EXPERT OPINION: While data from individual studies are encouraging, stem-cell-based therapies do not yet represent a satisfactory, reliable clinical option. The field will critically benefit from the introduction of well-designed, randomized and reproducible, powered clinical trials. Comparative studies addressing key issues such as the nature, properties, and number of donor cells, the delivery mode and the selection of proper patient populations that may benefit the most from cell-based therapies are now of the essence. Multidisciplinary networks of experts should be established to empower effective translation of research into the clinic.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Transplante de Células-Tronco/tendências , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Transplante de Células-Tronco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA