Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Am J Hum Genet ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38772379

RESUMO

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.

2.
J Pathol ; 263(2): 166-177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629245

RESUMO

Infantile fibrosarcomas (IFS) and congenital mesoblastic nephroma (CMN) are rare myofibroblastic tumors of infancy and early childhood commonly harboring the ETV6::NTRK3 gene fusion. IFS/CMN are considered as tumors with an 'intermediate prognosis' as they are locally aggressive, but rarely metastasize, and generally have a favorable outcome. A fraction of IFS/CMN-related neoplasms are negative for the ETV6::NTRK3 gene rearrangement and are characterized by other chimeric proteins promoting MAPK signaling upregulation. In a large proportion of these tumors, which are classified as IFS-like mesenchymal neoplasms, the contributing molecular events remain to be identified. Here, we report three distinct rearrangements involving RAF1 among eight ETV6::NTRK3 gene fusion-negative tumors with an original histological diagnosis of IFS/CMN. The three fusion proteins retain the entire catalytic domain of the kinase. Two chimeric products, GOLGA4::RAF1 and LRRFIP2::RAF1, had previously been reported as driver events in different cancers, whereas the third, CLIP1::RAF1, represents a novel fusion protein. We demonstrate that CLIP1::RAF1 acts as a bona fide oncoprotein promoting cell proliferation and migration through constitutive upregulation of MAPK signaling. We show that the CLIP1::RAF1 hyperactive behavior does not require RAS activation and is mediated by constitutive 14-3-3 protein-independent dimerization of the chimeric protein. As previously reported for the ETV6::NTRK3 fusion protein, CLIP1::RAF1 similarly upregulates PI3K-AKT signaling. Our findings document that RAF1 gene rearrangements represent a recurrent event in ETV6::NTRK3-negative IFS/CMN and provide a rationale for the use of inhibitors directed to suppress MAPK and PI3K-AKT signaling in these cancers. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Fibrossarcoma , Nefroma Mesoblástico , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas c-raf , Humanos , Fibrossarcoma/genética , Fibrossarcoma/patologia , Proteínas Proto-Oncogênicas c-raf/genética , Lactente , Proteínas de Fusão Oncogênica/genética , Nefroma Mesoblástico/genética , Nefroma Mesoblástico/patologia , Feminino , Masculino , Neoplasias Renais/genética , Neoplasias Renais/patologia , Fusão Gênica , Transdução de Sinais/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proliferação de Células , Rearranjo Gênico , Variante 6 da Proteína do Fator de Translocação ETS , Receptor trkC
3.
Mov Disord ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38685873

RESUMO

BACKGROUND: The MRPS36 gene encodes a recently identified component of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the Krebs cycle catalyzing the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. Defective OGDHC activity causes a clinically variable metabolic disorder characterized by global developmental delay, severe neurological impairment, liver failure, and early-onset lactic acidosis. METHODS: We investigated the molecular cause underlying Leigh syndrome with bilateral striatal necrosis in two siblings through exome sequencing. Functional studies included measurement of the OGDHC enzymatic activity and MRPS36 mRNA levels in fibroblasts, assessment of protein stability in transfected cells, and structural analysis. A literature review was performed to define the etiological and phenotypic spectrum of OGDHC deficiency. RESULTS: In the two affected brothers, exome sequencing identified a homozygous nonsense variant (c.283G>T, p.Glu95*) of MRPS36. The variant did not affect transcript processing and stability, nor protein levels, but resulted in a shorter protein lacking nine residues that contribute to the structural and functional organization of the OGDHC complex. OGDHC enzymatic activity was significantly reduced. The review of previously reported cases of OGDHC deficiency supports the association of this enzymatic defect with Leigh phenotypic spectrum and early-onset movement disorder. Slightly elevated plasma levels of glutamate and glutamine were observed in our and literature patients with OGDHC defect. CONCLUSIONS: Our findings point to MRPS36 as a new disease gene implicated in Leigh syndrome. The slight elevation of plasma levels of glutamate and glutamine observed in patients with OGDHC deficiency represents a candidate metabolic signature of this neurometabolic disorder. © 2024 International Parkinson and Movement Disorder Society.

4.
Nat Commun ; 15(1): 3662, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688902

RESUMO

Hematopoietic stem cell gene therapy (GT) using a γ-retroviral vector (γ-RV) is an effective treatment for Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency. Here, we describe a case of GT-related T-cell acute lymphoblastic leukemia (T-ALL) that developed 4.7 years after treatment. The patient underwent chemotherapy and haploidentical transplantation and is currently in remission. Blast cells contain a single vector insertion activating the LIM-only protein 2 (LMO2) proto-oncogene, confirmed by physical interaction, and low Adenosine Deaminase (ADA) activity resulting from methylation of viral promoter. The insertion is detected years before T-ALL in multiple lineages, suggesting that further hits occurred in a thymic progenitor. Blast cells contain known and novel somatic mutations as well as germline mutations which may have contributed to transformation. Before T-ALL onset, the insertion profile is similar to those of other ADA-deficient patients. The limited incidence of vector-related adverse events in ADA-deficiency compared to other γ-RV GT trials could be explained by differences in transgenes, background disease and patient's specific factors.


Assuntos
Adenosina Desaminase , Agamaglobulinemia , Terapia Genética , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proto-Oncogene Mas , Imunodeficiência Combinada Severa , Humanos , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Terapia Genética/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Imunodeficiência Combinada Severa/terapia , Imunodeficiência Combinada Severa/genética , Vetores Genéticos/genética , Agamaglobulinemia/terapia , Agamaglobulinemia/genética , Masculino , Retroviridae/genética
5.
NPJ Precis Oncol ; 8(1): 92, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637626

RESUMO

In vitro models of pediatric brain tumors (pBT) are instrumental for better understanding the mechanisms contributing to oncogenesis and testing new therapies; thus, ideally, they should recapitulate the original tumor. We applied DNA methylation (DNAm) and copy number variation (CNV) profiling to characterize 241 pBT samples, including 155 tumors and 86 pBT-derived cell cultures, considering serum vs serum-free conditions, late vs early passages, and dimensionality (2D vs 3D cultures). We performed a t-SNE classification and identified differentially methylated regions in tumors compared to cell models. Early cell cultures recapitulate the original tumor, but serum media and 2D culturing were demonstrated to significantly contribute to the divergence of DNAm profiles from the parental ones. All divergent cells clustered together acquiring a common deregulated epigenetic signature suggesting a shared selective pressure. We identified a set of hypomethylated genes shared among unfaithful cells converging on response to growth factors and migration pathways, such as signaling cascade activation, tissue organization, and cellular migration. In conclusion, DNAm and CNV are informative tools that should be used to assess the recapitulation of pBT-cells from parental tumors.

6.
Am J Hum Genet ; 111(3): 594-613, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38423010

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Assuntos
Epilepsia Generalizada , Atrofia Óptica , Animais , Humanos , Criança , Peixe-Zebra/genética , Atrofia Óptica/genética , Fenótipo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
7.
Nat Commun ; 15(1): 365, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191484

RESUMO

WDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities. We demonstrate that WDR44 variants associated with more severe disease impair ciliogenesis initiation and ciliary signaling. Because WDR44 negatively regulates ciliogenesis, it was surprising that pathogenic missense variants showed reduced abundance, which we link to misfolding of WDR autonomous repeats and degradation by the proteasome. We discover that disease severity correlates with increased RAB11 binding, which we propose drives ciliogenesis initiation dysregulation. Finally, we discover interdomain interactions between the WDR and NH2-terminal region that contains the RAB11 binding domain (RBD) and show patient variants disrupt this association. This study provides new insights into WDR44 WDR structure and characterizes a new syndrome that could result from impaired ciliogenesis.


Assuntos
Ciliopatias , Genes Ligados ao Cromossomo X , Repetições WD40 , Animais , Humanos , Masculino , Encéfalo , Ciliopatias/genética , Cognição , Peixe-Zebra/genética
8.
Haematologica ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37981895

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a rare, generally aggressive myeloproliferative neoplasm affecting young children. It is characterized by granulomonocytic expansion, with monocytosis infiltrating peripheral tissues. JMML is initiated by mutations upregulating RAS signaling. Approximately 10% of cases remain without an identified driver event. Exome sequencing of 2 unrelated cases of familial JMML of unknown genetics and analysis of the French JMML cohort identified 11 patients with variants in SH2B3, encoding LNK, a negative regulator of the JAK-STAT pathway. All variants were absent from healthy population databases, and mutation spectrum was consistent with a loss of function of the LNK protein. A stoploss variant was shown to affect both protein synthesis and stability. The other variants were either truncating or missense, the latter affecting the SH2 domain that interacts with activated JAK. Of the 11 patients, 8 from 5 families inherited pathogenic bi-allelic SH2B3 germline variants from their unaffected heterozygous parents. These children represent half of the cases with no identified causal mutation in the French cohort. They displayed typical clinical and hematological JMML features with neonatal onset and marked thrombocytopenia. They were characterized by absence of additional genetic alterations and a hypomethylated DNA profile with fetal characteristics. All patients showed partial or complete spontaneous clinical resolution. However, progression to thrombocythemia and immunity-related pathologies may be of concern later in life. Bi-allelic SH2B3 germline mutations thus define a new condition predisposing to a JMML-like disorder, suggesting that the JAK pathway deregulation is capable of initiating JMML, and opening new therapeutic options.

9.
Am J Hum Genet ; 110(11): 1938-1949, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37865086

RESUMO

Fanconi anemia (FA) is a clinically variable and genetically heterogeneous cancer-predisposing disorder representing the most common bone marrow failure syndrome. It is caused by inactivating predominantly biallelic mutations involving >20 genes encoding proteins with roles in the FA/BRCA DNA repair pathway. Molecular diagnosis of FA is challenging due to the wide spectrum of the contributing gene mutations and structural rearrangements. The assessment of chromosomal fragility after exposure to DNA cross-linking agents is generally required to definitively confirm diagnosis. We assessed peripheral blood genome-wide DNA methylation (DNAm) profiles in 25 subjects with molecularly confirmed clinical diagnosis of FA (FANCA complementation group) using Illumina's Infinium EPIC array. We identified 82 differentially methylated CpG sites that allow to distinguish subjects with FA from healthy individuals and subjects with other genetic disorders, defining an FA-specific DNAm signature. The episignature was validated using a second cohort of subjects with FA involving different complementation groups, documenting broader genetic sensitivity and demonstrating its specificity using the EpiSign Knowledge Database. The episignature properly classified DNA samples obtained from bone marrow aspirates, demonstrating robustness. Using the selected probes, we trained a machine-learning model able to classify EPIC DNAm profiles in molecularly unsolved cases. Finally, we show that the generated episignature includes CpG sites that do not undergo functional selective pressure, allowing diagnosis of FA in individuals with reverted phenotype due to gene conversion. These findings provide a tool to accelerate diagnostic testing in FA and broaden the clinical utility of DNAm profiling in the diagnostic setting.


Assuntos
Anemia de Fanconi , Humanos , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Metilação de DNA/genética , Proteínas/genética , DNA/metabolismo
10.
Front Genet ; 14: 1231434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636262

RESUMO

We report a 7-year-old boy born with epidermal nevi (EN) arranged according to Blaschko's lines involving the face and head, right upper limb, chest, and left lower limb, who developed a left paratesticular embryonal rhabdomyosarcoma at 18 months of age. Parallel sequencing identified a gain-of-function variant (c.37G>C, p.Gly13Arg) of HRAS in both epidermal nevus and tumor but not in leukocytes or buccal mucosal epithelial cells, indicating its postzygotic origin. The variant accounted for 33% and 92% of the total reads in the nevus and tumor DNA specimens, respectively, supporting additional somatic hits in the latter. DNA methylation (DNAm) profiling of the tumor documented a signature consistent with embryonal rhabdomyosarcoma and CNV array analysis inferred from the DNAm arrays and subsequent MLPA analysis demonstrated copy number gains of the entire paternal chromosome 11 carrying the mutated HRAS allele, likely as the result of paternal unidisomy followed by subsequent gain(s) of the paternal chromosome in the tumor. Other structural rearrangements were observed in the tumours, while no additional pathogenic variants affecting genes with role in the RAS-MAPK and PI3K-AKT-MTOR pathways were identified. Our findings provide further evidence of the contribution of "gene dosage" to the multistep process driving cell transformation associated with hyperactive HRAS function.

11.
Front Neurol ; 14: 1207176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521304

RESUMO

Objective: We aimed to report on previously unappreciated clinical features associated with FOXP1-related intellectual disability (ID) syndrome, a rare neurodevelopmental disorder characterized by global developmental delay, intellectual disability, and language delay, with or without autistic features. Methods: We performed whole-exome sequencing (WES) to molecularly characterize an individual presenting with ID, epilepsy, autism spectrum disorder, behavioral problems, and facial dysmorphisms as major features. Results: WES allowed us to identify a previously unreported de novo splice site variant, c.1429-1G>T (NM_032682.6), in the FOXP1 gene (OMIM*605515) as the causative event underlying the phenotype. Clinical reassessment of the patient and revision of the literature allowed us to refine the phenotype associated with FOXP1 haploinsufficiency, including hyperkinetic movement disorder and flat angiomas as associated features. Interestingly, the patient also has an asymmetric face and choanal atresia and a novel de novo variant of the CHD7 gene. Conclusion: We suggest that FOXP1-related ID syndrome may also predispose to the development of hyperkinetic movement disorders and flat angiomas. These features could therefore require specific management of this condition.

12.
Int J Cancer ; 153(5): 1080-1095, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37293858

RESUMO

BRAFV600 mutations are the most common oncogenic alterations in melanoma cells, supporting proliferation, invasion, metastasis and immune evasion. In patients, these aberrantly activated cellular pathways are inhibited by BRAFi whose potent antitumor effect and therapeutic potential are dampened by the development of resistance. Here, by using primary melanoma cell lines, generated from lymph node lesions of metastatic patients, we show that the combination of two FDA-approved drugs, the histone deacetylate inhibitor (HDCAi) romidepsin and the immunomodulatory agent IFN-α2b, reduces melanoma proliferation, long-term survival and invasiveness and overcomes acquired resistance to the BRAFi vemurafenib (VEM). Targeted resequencing revealed that each VEM-resistant melanoma cell line and the parental counterpart are characterized by a distinctive and similar genetic fingerprint, shaping the differential and specific antitumor modulation of MAPK/AKT pathways by combined drug treatment. By using RNA-sequencing and functional in vitro assays, we further report that romidepsin-IFN-α2b treatment restores epigenetically silenced immune signals, modulates MITF and AXL expression and induces both apoptosis and necroptosis in sensitive and VEM-resistant primary melanoma cells. Moreover, the immunogenic potential of drug-treated VEM-resistant melanoma cells results significantly enhanced, given the increased phagocytosis rate of these cells by dendritic cells, which in turn exhibit also a selective down-modulation of the immune checkpoint TIM-3. Overall, our results provide evidence that combined epigenetic-immune drugs can overcome VEM resistance of primary melanoma cells by oncogenic and immune pathways reprogramming, and pave the way for rapidly exploiting this combination to improve BRAFi-resistant metastatic melanoma treatment, also via reinforcement of immune checkpoint inhibitor therapy.


Assuntos
Interferon Tipo I , Melanoma , Humanos , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Linhagem Celular Tumoral
13.
Front Neurol ; 14: 1090082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824420

RESUMO

Biallelic loss-of-function variants in MED23 cause a recessive syndromic intellectual disability condition with or without epilepsy (MRT18). Due to the small number of reported individuals, the clinical phenotype of the disorder has not been fully delineated yet, and the spectrum and frequency of neurologic features have not been fully characterized. Here, we report a 5-year-old girl with compound heterozygous for two additional MED23 variants. Besides global developmental delay, axial hypotonia and peripheral increased muscular tone, absent speech, and generalized tonic seizures, which fit well MRT18, the occurrence of postnatal progressive microcephaly has been here documented. A retrospective assessment of the previously reported clinical data for these subjects confirms the occurrence of postnatal progressive microcephaly as a previously unappreciated feature of the phenotype of MED23-related disorder.

14.
Genet Med ; 25(4): 100018, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681873

RESUMO

PURPOSE: Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the "ClinVar low-hanging fruit" reanalysis, reasons for the failure of previous analyses, and lessons learned. METHODS: Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. RESULTS: We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). CONCLUSION: The "ClinVar low-hanging fruit" analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock.


Assuntos
Deficiência Intelectual , Humanos , Sequenciamento do Exoma , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Alelos , Genótipo
15.
Clin Genet ; 103(2): 156-166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36224108

RESUMO

CNOT2 haploinsufficiency underlies a rare neurodevelopmental disorder named Intellectual Developmental disorder with NAsal speech, Dysmorphic Facies, and variable Skeletal anomalies (IDNADFS, OMIM 618608). The condition clinically overlaps with chromosome 12q15 deletion syndrome, suggesting a major contribution of CNOT2 haploinsufficiency to the latter. CNOT2 is a member of the CCR4-NOT complex, which is a master regulator of multiple cellular processes, including gene expression, RNA deadenylation, and protein ubiquitination. To date, less than 20 pathogenic 12q15 microdeletions encompassing CNOT2, together with a single truncating variant of the gene, and two large intragenic deletions have been reported. Due to the small number of affected subjects described so far, the clinical profile of IDNADFS has not been fully delineated. Here we report five unrelated individuals, three of which carrying de novo intragenic CNOT2 variants, one presenting with a multiexon intragenic deletion, and an additional case of 12q15 microdeletion syndrome. Finally, we assess the features of IDNADFS by reviewing published and present affected individuals and reevaluate the clinical phenotype of this neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deleção Cromossômica , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fenótipo , Proteínas Repressoras/genética
16.
Arch Gynecol Obstet ; 307(6): 1789-1794, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35704115

RESUMO

PURPOSE: To analyze the mechanisms involved in the fetal heart rate (FHR) abnormalities after the epidural analgesia in labor. METHODS: A prospective unblinded single-center observational study on 55 term singleton pregnant women with spontaneous labor. All women recruited underwent serial bedside measurements of the main hemodynamic parameters using a non-invasive ultrasound system (USCOM-1A). Total vascular resistances (TVR), heart rate (HR), stroke volume (SV), cardiac output (CO) and arterial blood pressure were measured before epidural administration (T0), after 5 min 5 (T1) from epidural bolus and at the end of the first stage of labor (T2). FHR was continuously recorded through computerized cardiotocography before and after the procedure. RESULTS: The starting CO was significantly higher in a subgroup of women with low TVR than in women with high-TVR group. After the bolus of epidural analgesia in the low-TVR group there was a significant reduction in CO and then increased again at the end of the first stage, in the high-TVR group the CO increased insignificantly after the anesthesia bolus, while it increased significantly in the remaining part of the first stage of labor. On the other hand, CO was inversely correlated with the number of decelerations detected on cCTG in the 1 hour after the epidural bolus while the short-term variation was significantly lower in the group with high-TVR. CONCLUSION: Maternal hemodynamic status at the onset of labor can make a difference in fetal response to the administration of epidural analgesia.


Assuntos
Analgesia Epidural , Analgesia Obstétrica , Trabalho de Parto , Gravidez , Feminino , Humanos , Analgesia Epidural/métodos , Cardiotocografia/métodos , Estudos Prospectivos , Hemodinâmica , Frequência Cardíaca Fetal , Analgesia Obstétrica/métodos
17.
Hum Mol Genet ; 32(3): 473-488, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36018820

RESUMO

Kinesins are motor proteins involved in microtubule (MT)-mediated intracellular transport. They contribute to key cellular processes, including intracellular trafficking, organelle dynamics and cell division. Pathogenic variants in kinesin-encoding genes underlie several human diseases characterized by an extremely variable clinical phenotype, ranging from isolated neurodevelopmental/neurodegenerative disorders to syndromic phenotypes belonging to a family of conditions collectively termed as 'ciliopathies.' Among kinesins, kinesin-1 is the most abundant MT motor for transport of cargoes towards the plus end of MTs. Three kinesin-1 heavy chain isoforms exist in mammals. Different from KIF5A and KIF5C, which are specifically expressed in neurons and established to cause neurological diseases when mutated, KIF5B is an ubiquitous protein. Three de novo missense KIF5B variants were recently described in four subjects with a syndromic skeletal disorder characterized by kyphomelic dysplasia, hypotonia and DD/ID. Here, we report three dominantly acting KIF5B variants (p.Asn255del, p.Leu498Pro and p.Leu537Pro) resulting in a clinically wide phenotypic spectrum, ranging from dilated cardiomyopathy with adult-onset ophthalmoplegia and progressive skeletal myopathy to a neurodevelopmental condition characterized by severe hypotonia with or without seizures. In vitro and in vivo analyses provide evidence that the identified disease-associated KIF5B variants disrupt lysosomal, autophagosome and mitochondrial organization, and impact cilium biogenesis. All variants, and one of the previously reported missense changes, were shown to affect multiple developmental processes in zebrafish. These findings document pleiotropic consequences of aberrant KIF5B function on development and cell homeostasis, and expand the phenotypic spectrum resulting from altered kinesin-mediated processes.


Assuntos
Cinesinas , Animais , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Mamíferos/metabolismo , Hipotonia Muscular , Neurônios/metabolismo , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
Genes (Basel) ; 13(11)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421837

RESUMO

BACKGROUND: Inactivating NSD1 mutations causing Sotos syndrome have been previously associated with a specific genome-wide DNA methylation (DNAm) pattern. Sotos syndrome is characterized by phenotypic overlap with other overgrowth syndromes, and a definite diagnosis might not be easily reached due to the high prevalence of variants of unknown significance (VoUS) that are identified in patients with a suggestive phenotype. OBJECTIVE: we performed microarray DNAm profiling in a set of 11 individuals with a clinical suspicion of Sotos syndrome and carrying an NSD1 VoUS or previously unreported variants to solve uncertainty in defining pathogenicity of the observed variants. The impact of the training cohort size on sensitivity and prediction confidence of the classifier was assessed. RESULTS: The Sotos syndrome-specific DNAm signature was validated in six individuals with a clinical diagnosis of Sotos syndrome and carrying bona fide pathogenic NSD1 variants. Applying this approach to the remaining 11 individuals with NSD1 variants, we succeeded in confirming pathogenicity in eight subjects and excluding the diagnosis of Sotos syndrome in three. The sensitivity and prediction confidence of the classifier based on the different sizes of the training sets did not show substantial differences, though the overall performance was improved by using a data balancing strategy. CONCLUSIONS: The present approach solved uncertainty in cases with NDS1 VoUS, further demonstrating the clinical utility of DNAm profiling.


Assuntos
Síndrome de Sotos , Humanos , Síndrome de Sotos/diagnóstico , Síndrome de Sotos/genética , Síndrome de Sotos/patologia , Metilação de DNA/genética , Histona-Lisina N-Metiltransferase/genética , Incerteza , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia
19.
Nat Commun ; 13(1): 6841, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369169

RESUMO

Vesicle biogenesis, trafficking and signaling via Endoplasmic reticulum-Golgi network support essential developmental processes and their disruption lead to neurodevelopmental disorders and neurodegeneration. We report that de novo missense variants in ARF3, encoding a small GTPase regulating Golgi dynamics, cause a developmental disease in humans impairing nervous system and skeletal formation. Microcephaly-associated ARF3 variants affect residues within the guanine nucleotide binding pocket and variably perturb protein stability and GTP/GDP binding. Functional analysis demonstrates variably disruptive consequences of ARF3 variants on Golgi morphology, vesicles assembly and trafficking. Disease modeling in zebrafish validates further the dominant behavior of the mutants and their differential impact on brain and body plan formation, recapitulating the variable disease expression. In-depth in vivo analyses traces back impaired neural precursors' proliferation and planar cell polarity-dependent cell movements as the earliest detectable effects. Our findings document a key role of ARF3 in Golgi function and demonstrate its pleiotropic impact on development.


Assuntos
Transtornos do Neurodesenvolvimento , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo
20.
Cell Mol Life Sci ; 79(10): 526, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36136249

RESUMO

CAPRIN1 is a ubiquitously expressed protein, abundant in the brain, where it regulates the transport and translation of mRNAs of genes involved in synaptic plasticity. Here we describe two unrelated children, who developed early-onset ataxia, dysarthria, cognitive decline and muscle weakness. Trio exome sequencing unraveled the identical de novo c.1535C > T (p.Pro512Leu) missense variant in CAPRIN1, affecting a highly conserved residue. In silico analyses predict an increased aggregation propensity of the mutated protein. Indeed, overexpressed CAPRIN1P512L forms insoluble ubiquitinated aggregates, sequestrating proteins associated with neurodegenerative disorders (ATXN2, GEMIN5, SNRNP200 and SNCA). Moreover, the CAPRIN1P512L mutation in isogenic iPSC-derived cortical neurons causes reduced neuronal activity and altered stress granule dynamics. Furthermore, nano-differential scanning fluorimetry reveals that CAPRIN1P512L aggregation is strongly enhanced by RNA in vitro. These findings associate the gain-of-function Pro512Leu mutation to early-onset ataxia and neurodegeneration, unveiling a critical residue of CAPRIN1 and a key role of RNA-protein interactions.


Assuntos
Proteínas de Ciclo Celular , Agregados Proteicos , Ataxia , Proteínas de Ciclo Celular/metabolismo , Criança , Humanos , Mutação , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA