Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Calcium ; 87: 102194, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32172011

RESUMO

Sodium-calcium exchanger (NCX) 1 and 3, have been demonstrated to play a relevant role in controlling the intracellular homeostasis of sodium and calcium ions in physiological and patho-physiological conditions. While NCX1 and NCX3 knocking-down have been both implicated in brain ischemia, several aspects of the epigenetic regulation of these two antiporters transcription were not yet well characterized. In response to stroke, NCX1 and NCX3 transcriptional regulation occurs from specific promoter sequences. Several evidences have shown that the expression of NCX1 and NCX3 can be determined by epigenetic modifications, consisting in changes of the histone acetylation levels on their promoter sequences. An interesting issue is that histone modifications at the NCX1 and NCX3 promoters could be linked to neurodegeneration occurring after stroke. Therefore, identifying the epigenetic regulation at the NCX1 and NCX3 promoters could permit to identify new molecular targets that can open new strategies for stroke treatment. The current review reassumes the recent knowledge of histone modifications of NCX1 and NCX3 genes in brain in physiological and patho-physiological conditions.


Assuntos
Encéfalo/metabolismo , Epigênese Genética , Trocador de Sódio e Cálcio/genética , Transcrição Gênica , Animais , Humanos , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/metabolismo , Fatores de Transcrição/metabolismo
2.
J Cereb Blood Flow Metab ; 40(10): 2081-2097, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31696766

RESUMO

The histone deacetylases (HDACs)-dependent mechanisms regulating gene transcription of the Na+/Ca+ exchanger isoform 3 (ncx3) after stroke are still unknown. Overexpression or knocking-down of HDAC4/HDAC5 down-regulates or increases, respectively, NCX3 mRNA and protein. Likewise, MC1568 (class IIa HDACs inhibitor), but not MS-275 (class I HDACs inhibitor) increased NCX3 promoter activity, gene and protein expression. Furthermore, HDAC4 and HDAC5 physically interacted with the transcription factor downstream regulatory element antagonist modulator (DREAM). As MC1568, DREAM knocking-down prevented HDAC4 and HDAC5 recruitment to the ncx3 promoter. Importantly, DREAM, HDAC4, and HDAC5 recruitment to the ncx3 gene was increased in the temporoparietal cortex of rats subjected to transient middle cerebral artery occlusion (tMCAO), with a consequent histone-deacetylation of ncx3 promoter. Conversely, the tMCAO-induced NCX3 reduction was prevented by intracerebroventricular injection of siDREAM, siHDAC4, and siHDAC5. Notably, MC1568 prevented oxygen glucose deprivation plus reoxygenation and tMCAO-induced neuronal damage, whereas its neuroprotective effect was abolished by ncx3 knockdown. Collectively, we found that: (1) DREAM/HDAC4/HDAC5 complex epigenetically down-regulates ncx3 gene transcription after stroke, and (2) pharmacological inhibition of class IIa HDACs reduces stroke-induced neurodetrimental effects.


Assuntos
Epigênese Genética/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Neurônios/patologia , Proteínas Repressoras/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Animais , Córtex Cerebral/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Histona Desacetilases/genética , Humanos , Hipóxia Encefálica/prevenção & controle , Infarto da Artéria Cerebral Média/patologia , Proteínas Interatuantes com Canais de Kv/antagonistas & inibidores , Proteínas Interatuantes com Canais de Kv/genética , Masculino , Fármacos Neuroprotetores , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Trocador de Sódio e Cálcio/genética , Acidente Vascular Cerebral/genética
3.
Neurotoxicology ; 71: 6-15, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30503815

RESUMO

In humans, mutation of glycine 93 to alanine of Cu++/Zn++ superoxide dismutase type-1 (SOD1-G93 A) has been associated to some familial cases of Amyotrophic Lateral Sclerosis (ALS). Several evidence proposed the involvement of environmental pollutants that like mercury could accelerate ALS symptoms. SH-SY5Y cells stably transfected with SOD1 and G93 A mutant of SOD1 constructs were exposed to non-toxic concentrations (0.01 µM) of ethylmercury thiosalicylate (thimerosal) for 24 h. Interestingly, we found that thimerosal, in SOD1-G93 A cells, but not in SOD1 cells, reduced cell survival. Furthermore, thimerosal-induced cell death occurred in a concentration dependent-manner and was prevented by the Sirtuin 1 (SIRT1) activator Resveratrol (RSV). Moreover, thimerosal decreased the protein expression of transcription factor Downstream Regulatory Element Antagonist Modulator (DREAM), but not DREAM gene. Interestingly, DREAM reduction was blocked by co-treatment with RSV, suggesting the participation of SIRT1 in determining this effect. Immunoprecipitation experiments in SOD1-G93 A cells exposed to thimerosal demonstrated that RSV increased DREAM deacetylation and reduced its polyubiquitination. In addition, RSV counteracted thimerosal-enhanced prodynorphin (PDYN) mRNA, a DREAM target gene. Furthermore, cortical neurons transiently transfected with SOD1-G93 A construct and exposed to thimerosal (0.5 µM/24 h) showed a reduction of DREAM and an up-regulation of the prodynorphin gene. Importantly, both the treatment with RSV or the transfection of siRNA against prodynorphin significantly reduced thimerosal-induced neurotoxicity, while DREAM knocking-down potentiated thimerosal-reduced cell survival. These results demonstrate the particular vulnerability of SOD1-G93 A neuronal cells to thimerosal and that RSV via SIRT1 counteracts the neurodetrimental effect of this toxicant by preventing DREAM reduction and prodynorphin up-regulation.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Resveratrol/administração & dosagem , Transdução de Sinais , Superóxido Dismutase/metabolismo , Timerosal/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Encefalinas/metabolismo , Humanos , Proteínas Interatuantes com Canais de Kv/metabolismo , Precursores de Proteínas/metabolismo , Ratos Wistar , Proteínas Repressoras/metabolismo , Sirtuína 1/metabolismo , Superóxido Dismutase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA