Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558421

RESUMO

The noncanonical inflammasome is a signalling complex critical for cell defence against cytosolic Gram-negative bacteria. A key step in the human noncanonical inflammasome pathway involves unleashing the proteolytic activity of caspase-4 within this complex. Caspase-4 induces inflammatory responses by cleaving gasdermin-D (GSDMD) to initiate pyroptosis; however, the molecular mechanisms that activate caspase-4 and govern its capacity to cleave substrates remain poorly defined. Caspase-11, the murine counterpart of caspase-4, acquires protease activity within the noncanonical inflammasome by forming a dimer that self-cleaves at D285 to cleave GSDMD. These cleavage events trigger signalling via the NLRP3-ASC-caspase-1 axis, leading to downstream cleavage of the pro-IL-1ß cytokine precursor. Here, we show that caspase-4 first dimerises then self-cleaves at two sites-D270 and D289-in the interdomain linker to acquire full proteolytic activity, cleave GSDMD, and induce cell death. Surprisingly, caspase-4 dimerisation and self-cleavage at D289 generate a caspase-4 p34/p9 protease species that directly cleaves pro-IL-1ß, resulting in its maturation and secretion independently of the NLRP3 inflammasome in primary human myeloid and epithelial cells. Our study thus elucidates the key molecular events that underpin signalling by the caspase-4 inflammasome and identifies IL-1ß as a natural substrate of caspase-4.


Assuntos
Caspases Iniciadoras , Gasderminas , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Caspase 1/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Caspases Iniciadoras/metabolismo , Gasderminas/metabolismo
2.
Prog Lipid Res ; 87: 101182, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35901922

RESUMO

The inflammatory response is a complex regulated effector mechanism of the innate immune system that is initiated after tissue injury or infection. The NLRP3 inflammasome is an important initiator of inflammation by regulating the activation of caspase-1, the maturation of pro-inflammatory cytokines and the induction of pyroptotic cell death. Numerous studies demonstrate that the NLRP3 inflammasome could be modulated by lipids, existing a relation between lipids and the activation of different inflammatory processes. In this review we will summarize how the mechanism of NLRP3 inflammasome activation is regulated by different lipids and how these lipids control specific cellular localization of NLRP3 during activation. Although being a cytosolic protein, NLRP3 interacts with lipids accessible in neighbor membranes. Also, the modulation of NLRP3 by endogenous lipids has been found causative of different metabolic diseases and bacterial-pathogenic lipids lead to NLRP3 activation during infection. The understanding of the modulation of the NLRP3 inflammasome by lipids has resulted not only in a better knowledge about the mechanism of NLRP3 activation and its implication in disease, but also opens a new avenue for the development of novel therapeutics and vaccines, as NLRP3 could be modulated by synthetic lipids used as adjuvants.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Lipídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Trends Cell Biol ; 30(11): 892-903, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33011017

RESUMO

Cardiolipin (CL) is a tetra-acylated diphosphatidylglycerol lipid. In physiological conditions, CL presents unsaturated chains and is located in the inner mitochondria membrane (IMM). Dead signals, infection, or disease may change the level of CL saturation and oxidation and cause its translocation to the cytosolic side of the outer mitochondrial membrane (OMM), affecting mitochondrial function and the inflammatory response. In this review, we summarize the emerging proapoptotic, pro-, and anti-inflammatory functions of cytosolic-exposed CL and how they are regulated by CL chain saturation and oxidation. We underline how the unique dimeric phospholipid structure confers peculiar properties on CL in the regulation of cell death and immune system proteins, such as the Nucleotide-binding domain and leucine-rich repeat-containing pyrin protein 3 (NLRP3), caspases (Casp), and Toll-like receptor 4 (TLR4). We also provide an overview of the human diseases in which CL deficiency or modification are implicated and of the use of exogenous unsaturated CL (uCL) as a novel therapeutic approach.


Assuntos
Cardiolipinas/metabolismo , Transdução de Sinais , Animais , Anti-Inflamatórios/metabolismo , Cardiolipinas/química , Morte Celular , Humanos , Imunidade Inata , Mitocôndrias/metabolismo
5.
Mater Sci Eng C Mater Biol Appl ; 103: 109813, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349435

RESUMO

A γ-irradiated bovine albumin serum-based nanoparticle was characterised structurally, and functionally. The nanoparticle was characterised by A.F.M., D.L.S, zeta potential, T.E.M., gel-electrophoresis, and spectroscopy. We studied the stability of the nanoparticle at different pH values and against time, by fluorescence spectroscopy following the changes in the tryptophan environment in the nanoparticle. The nanoparticle was also functionalized with Folic Acid, its function as a nanovehicle was evaluated through its interaction with the hydrophobic drug Emodin. The binding and kinetic properties of the obtained complex were evaluated by biophysical methods as well as its toxicity in tumor cells. According to its biophysics, the nanoparticle is a spherical nanosized vehicle with a hydrodynamic diameter of 70 nm. Data obtained describe the nanoparticle as nontoxic for cancer cell lines. When combined with Emodin, the nanoparticle proved to be more active on MCF-7 cancer cell lines than the nanoparticle without Emodin. Significantly, the albumin aggregate preserves the main activity-function of albumin and improved characteristics as an excellent carrier of molecules. More than carrier properties, the nanoparticle alone induced an immune response in macrophages which may be advantageous in vaccine and cancer therapy formulation.


Assuntos
Portadores de Fármacos/química , Emodina/administração & dosagem , Nanopartículas/química , Soroalbumina Bovina/química , Animais , Sistemas de Liberação de Medicamentos , Emodina/farmacologia , Ácido Fólico/química , Raios gama , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , NF-kappa B/metabolismo , Nanopartículas/toxicidade , Soroalbumina Bovina/farmacologia , Soroalbumina Bovina/toxicidade , Espectrometria de Fluorescência
6.
Cell Mol Life Sci ; 76(18): 3667-3678, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31062071

RESUMO

Cardiolipins (CLs) are tetra-acylated diphosphatidylglycerols found in bacteria, yeast, plants, and animals. In healthy mammals, CLs are unsaturated, whereas saturated CLs are found in blood cells from Barth syndrome patients and in some Gram-positive bacteria. Here, we show that unsaturated but not saturated CLs block LPS-induced NF-κB activation, TNF-α and IP-10 secretion in human and murine macrophages, as well as LPS-induced TNF-α and IL-1ß release in human blood mononuclear cells. Using HEK293 cells transfected with Toll-like receptor 4 (TLR4) and its co-receptor Myeloid Differentiation 2 (MD2), we demonstrate that unsaturated CLs compete with LPS for binding TLR4/MD2 preventing its activation, whereas saturated CLs are TLR4/MD2 agonists. As a consequence, saturated CLs induce a pro-inflammatory response in macrophages characterized by TNF-α and IP-10 secretion, and activate the alternative NLRP3 inflammasome pathway in human blood-derived monocytes. Thus, we identify that double bonds discriminate between anti- and pro-inflammatory properties of tetra-acylated molecules, providing a rationale for the development of TLR4 activators and inhibitors for use as vaccine adjuvants or in the treatment of TLR4-related diseases.


Assuntos
Cardiolipinas/farmacologia , Macrófagos/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Ligação Competitiva , Cardiolipinas/química , Cardiolipinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL10/metabolismo , Células HEK293 , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/genética , Antígeno 96 de Linfócito/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Monócitos/citologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Curr Opin Pharmacol ; 47: 90-96, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30952060

RESUMO

The inflammatory response is regulated by the production of different extracellular mediators, including lipids and extracellular nucleotides. In the extracellular environment, intermediate lipids activate specific G-protein-coupled receptors (GPCRs) in target cells and promote cell recruitment and activation. Extracellular nucleotides activate two types of receptors, the ionotropic purinergic P2X and the metabotropic purinergic P2Y receptors, inducing the release of cytokines and promoting cell recruitment. Several P2X receptors are associated with an increase in the production of immunoactive lipids mediators, which in turn are able to interfere with the activation of different P2Y receptors, establishing a tight signalling link between purinergic receptors and lipid mediators. In this review, we summarise recent studies indicating signalling crosstalk between purinergic P2X and P2Y receptor activation and lipid mediators with a focus on inflammatory diseases. Novel concepts arising from this crosstalk would result in the development of combinatorial therapies targeting lipid synthesis together with individual P2 receptors for the management of inflammatory diseases.


Assuntos
Inflamação/imunologia , Lipídeos/imunologia , Receptores Purinérgicos/imunologia , Animais , Humanos , Imunomodulação
8.
J Control Release ; 287: 67-77, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30110615

RESUMO

Effective vaccine formulations consist of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Here, we investigated the immunostimulatory and adjuvant properties of lipopolyamines, cationic lipids used as gene carriers. We identified new lipopolyamines able to activate both TLR2 and TLR4 and showed that lipopolyamines interact with TLRs via a mechanism different from the one used by bacterial ligands, activating a strong type-I IFN response, pro-inflammatory cytokines and IL-1ß secretion. The TLR and inflammasome stimulations, together with the antigen carrier properties of lipopolyamines, resulted in both humoral and cellular immunity in mice vaccinated against OVA and make lipopolyamines promising one-component vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Lipídeos/química , Lipídeos/farmacologia , Poliaminas/química , Poliaminas/farmacologia , Compostos de Alúmen/farmacologia , Animais , Cátions/administração & dosagem , Cátions/química , Cátions/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Células HEK293 , Humanos , Interleucina-1beta/imunologia , Lipídeos/administração & dosagem , Camundongos , Poliaminas/administração & dosagem , Células RAW 264.7 , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Vacinação , Vacinas/administração & dosagem , Vacinas/química , Vacinas/farmacologia
9.
Nanomedicine ; 14(4): 1417-1427, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29689371

RESUMO

Gliadin, an immunogenic protein present in wheat, is not fully degraded by humans and after the normal gastric and pancreatic digestion, the immunodominant 33-mer gliadin peptide remains unprocessed. The 33-mer gliadin peptide is found in human faeces and urine, proving not only its proteolytic resistance in vivo but more importantly its transport through the entire human body. Here, we demonstrate that 33-mer supramolecular structures larger than 220 nm induce the overexpression of nuclear factor kappa B (NF-κB) via a specific Toll-like Receptor (TLR) 2 and (TLR) 4 dependent pathway and the secretion of pro-inflammatory cytokines such as IP-10/CXCL10 and TNF-α. Using helium ion microscopy, we elucidated the initial stages of oligomerisation of 33-mer gliadin peptide, showing that rod-like oligomers are nucleation sites for protofilament formation. The relevance of the 33-mer supramolecular structures in the early stages of the disease is paving new perspectives in the understanding of gluten-related disorders.


Assuntos
Gliadina/metabolismo , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Humanos , Imunidade Inata/fisiologia , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
J Control Release ; 247: 182-193, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28040465

RESUMO

Lipopolyamines (LPAs) are cationic lipids; they interact spontaneously with nucleic acids to form lipoplexes used for gene delivery. The main hurdle to using lipoplexes in gene therapy lies in their immunostimulatory properties, so far attributed to the nucleic acid cargo, while cationic lipids were considered as inert to the immune system. Here we demonstrate for the first time that di-C18 LPAs trigger pro-inflammatory responses through Toll-like receptor 2 (TLR2) activation, and this whether they are bound to nucleic acids or not. Molecular docking experiments suggest potential TLR2 binding modes reminiscent of bacterial lipopeptide sensing. The di-C18 LPAs share the ability of burying their lipid chains in the hydrophobic cavity of TLR2 and, in some cases, TLR1, at the vicinity of the dimerization interface; the cationic headgroups form multiple hydrogen bonds, thus crosslinking TLRs into functional complexes. Unravelling the molecular basis of TLR1 and TLR6-driven heterodimerization upon LPA binding underlines the highly collaborative and promiscuous ligand binding mechanism. The prevalence of non-specific main chain-mediated interactions demonstrates that potentially any saturated LPA currently used or proposed as transfection agent is likely to activate TLR2 during transfection. Hence our study emphasizes the urgent need to test the inflammatory properties of transfection agents and proposes the use of docking analysis as a preliminary screening tool for the synthesis of new non-immunostimulatory nanocarriers.


Assuntos
Inflamação/induzido quimicamente , Lipídeos/imunologia , Poliaminas/imunologia , Receptor 2 Toll-Like/imunologia , Linhagem Celular , Células HEK293 , Humanos , Inflamação/imunologia , Lipídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Simulação de Acoplamento Molecular , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/genética , Poliaminas/efeitos adversos , Transfecção , Fator de Necrose Tumoral alfa/imunologia
11.
Cell Mol Life Sci ; 72(20): 3971-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25956320

RESUMO

DiC14-amidine is a cationic lipid that was originally designed as a lipid nanocarrier for nucleic acid transport, and turned out to be a Toll-like receptor 4 (TLR4) agonist as well. We found that while E. coli lipopolysaccharide (LPS) is a TLR4 agonist in all species, diC14-amidine nanoliposomes are full agonists for human, mouse and cat receptors but weak horse agonists. Taking advantage of this unusual species specificity, we used chimeric constructs based on the human and horse sequences and identified two regions in the human TLR4 that modulate the agonist activity of diC14-amidine. Interestingly, these regions lie outside the known LPS-binding domain. Competition experiments also support our hypothesis that diC14-amidine interacts primarily with TLR4 hydrophobic crevices located at the edges of the TLR4/TLR4* dimerization interface. We have characterized potential binding modes using molecular docking analysis and suggest that diC14-amidine nanoliposomes activate TLR4 by facilitating its dimerization in a process that is myeloid differentiation 2 (MD-2)-dependent and cluster of differentiation 14 (CD14)-independent. Our data suggest that TLR4 may be activated through binding at different anchoring points, expanding the repertoire of TLR4 ligands to non-MD-2-binding lipids.


Assuntos
Lipopolissacarídeos/química , Receptor 4 Toll-Like/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células HEK293 , Cavalos , Humanos , Metabolismo dos Lipídeos , Receptores de Lipopolissacarídeos/fisiologia , Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/química , Antígeno 96 de Linfócito/metabolismo , Antígeno 96 de Linfócito/fisiologia , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas Recombinantes de Fusão , Transdução de Sinais , Especificidade da Espécie , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA