Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 376: 128901, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931449

RESUMO

Biomass from four different Nordic microalgal species, grown in BG-11 medium or synthetic wastewater (SWW), was explored as inexpensive carbohydrate-rich feedstock for polyhydroxybutyrate (PHB) production via microbial fermentation. Thermochemical pre-treatment (acid treatment followed by autoclavation) with 2% hydrochloric acid or 1% sulphuric acid (v/v) was used to maximize sugar yield prior to fermentation. Pre-treatment resulted in ∼5-fold higher sugar yield compared to the control. The sugar-rich hydrolysate was used as carbon source for the PHB-producing extremophilic bacterium Halomonas halophila. Maximal PHB production was achieved with hydrolysate of Chlorococcum sp. (MC-1) grown on BG-11 medium (0.27 ± 0.05 g PHB/ g DW), followed by hydrolysate derived from Desmodesmus sp. (RUC-2) grown on SWW (0.24 ± 0.05 g PHB/ g DW). Nordic microalgal biomass grown on wastewater therefore can be used as cheap feedstock for sustainable bioplastic production. This research highlights the potential of Nordic microalgae to develop a biobased economy.


Assuntos
Biopolímeros , Microalgas , Águas Residuárias , Biomassa , Carboidratos , Açúcares
2.
Bioresour Technol ; 359: 127445, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35718245

RESUMO

Nordic Desmodesmus microalgal strains (2-6) and (RUC-2) were exposed to abiotic stress (light and salt) to enhance lipids and carotenoids. The biomass output of both strains increased by more than 50% during light stress of 800 µmol m-2 s-1 compared to control light. The biomass of Desmodesmus sp. (2-6) contained most lipids (15% of dry weight) and total carotenoids (16.6 mg g-1) when grown at moderate light stress (400 µmol m-2 s-1), which further could be enhanced up to 2.5-fold by salinity stress. Desmodesmus sp. (RUC-2) exhibited maximal lipid (26.5%) and carotenoid (43.8 mg L-1) content at light intensities of 400 and 100 µmol m-2 s-1, respectively. Salinity stress stimulated lipid accumulation by 39%. Nordic Desmodesmus strains therefore are not only able to tolerate stress conditions, but their biomass considerably improves under stress. These strains have high potential to be used in algal bio-factories on low-cost medium like Baltic seawater.


Assuntos
Microalgas , Biomassa , Carotenoides , Luz , Lipídeos
3.
Physiol Plant ; 173(2): 568-578, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33860948

RESUMO

The growth of the world's population increases the demand for fresh water, food, energy, and technology, which in turn leads to increasing amount of wastewater, produced both by domestic and industrial sources. These different wastewaters contain a wide variety of organic and inorganic compounds which can cause tremendous environmental problems if released untreated. Traditional treatment systems are usually expensive, energy demanding and are often still incapable of solving all challenges presented by the produced wastewaters. Microalgae are promising candidates for wastewater reclamation as they are capable of reducing the amount of nitrogen and phosphate as well as other toxic compounds including heavy metals or pharmaceuticals. Compared to the traditional systems, photosynthetic microalgae require less energy input since they use sunlight as their energy source, and at the same time lower the carbon footprint of the overall reclamation process. This mini-review focuses on recent advances in wastewater reclamation using microalgae. The most common microalgal strains used for this purpose are described as well as the challenges of using wastewater from different origins. We also describe the impact of climate with a particular focus on a Nordic climate.


Assuntos
Microalgas , Purificação da Água , Biomassa , Nitrogênio , Águas Residuárias
4.
Physiol Plant ; 173(2): 526-535, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33764544

RESUMO

Heavy metals in industrial wastewaters are posing a serious threat to the environment and to human health. Microalgae are increasingly being seen as potential solutions to this problem as they can remove pollutants through biosorption. This process offers certain advantages over other more traditional metal removal techniques as it is simple, inexpensive, eco-friendly, and can be performed over a wide range of experimental conditions. Biosorption is possible due to the unique and complex structure of the microalgal cell wall. The variety of functional groups on the surface of the cell wall (such as carboxyl or amino groups) can act as binding sites for the heavy metals, thus removing them from the environment. This review focuses on the cell wall composition and structure of the most commonly used microalgae in heavy metal removal and shows the role of their cell wall in the biosorption process. This review also aims to report the most commonly used models to predict the velocity of microalgal biosorption and the removal capacities.


Assuntos
Metais Pesados , Microalgas , Biodegradação Ambiental , Parede Celular , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA