Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Org Process Res Dev ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37552749

RESUMO

Lufotrelvir was designed as a first in class 3CL protease inhibitor to treat COVID-19. Development of lufotrelvir was challenged by its relatively poor stability due to its propensity to epimerize and degrade. Key elements of process development included improvement of the supply routes to the indole and lactam fragments, a Claisen addition to homologate the lactam, and a subsequent phosphorylation reaction to prepare the prodrug as well as identification of a DMSO solvated form of lufotrelvir to enable long-term storage. As a new approach to preparing the indole fragment, a Cu-catalyzed C-O coupling using oxalamide ligands was demonstrated. The control of process-related impurities was essential to accommodate the parenteral formulation. Isolation of an MEK solvate followed by the DMSO solvate ensured that all impurities were controlled appropriately.

2.
Clin Transl Sci ; 16(9): 1653-1666, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37350225

RESUMO

Inappropriate and chronic activation of the cytosolic NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome, a key component of innate immunity, likely underlies several inflammatory diseases, including coronary artery disease. This first-in-human phase I trial evaluated safety, pharmacokinetics (PKs), and pharmacodynamics (PDs) of oral, single (150-1800 mg) and multiple (300 or 900 mg twice daily for 7 days) ascending doses (SADs and MADs) of GDC-2394, a small-molecule inhibitor of NLRP3, versus placebo in healthy volunteers. The study also assessed the food effect on GDC-2394 and its CYP3A4 induction potential in food-effect (FE) and drug-drug interaction (DDI) stages, respectively. Although GDC-2394 was adequately tolerated in the SAD, MAD, and FE cohorts, two participants in the DDI stage experienced grade 4 drug-induced liver injury (DILI) deemed related to treatment, but unrelated to a PK drug interaction, leading to halting of the trial. Both participants experiencing severe DILI recovered within 3 months. Oral GDC-2394 was rapidly absorbed; exposure increased in an approximately dose-proportional manner with low-to-moderate intersubject variability. The mean terminal half-life ranged from 4.1 to 8.6 h. Minimal accumulation was observed with multiple dosing. A high-fat meal led to delays in time to maximum concentration and minor decreases in total exposure and maximum plasma concentration. GDC-2394 had minimal CYP3A4 induction potential with the sensitive CYP3A4 substrate, midazolam. Exploratory ex vivo whole-blood stimulation assays showed rapid, reversible, and near-complete inhibition of the selected PD biomarkers, IL-1ß and IL-18, across all tested doses. Despite favorable PK and target engagement PD, the GDC-2394 safety profile precludes its further development.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Voluntários Saudáveis , Citocromo P-450 CYP3A , Relação Dose-Resposta a Droga , Método Duplo-Cego , Administração Oral
3.
Eur J Immunol ; 52(2): 285-296, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34694641

RESUMO

The upregulation of interferon (IFN)-inducible GTPases in response to pathogenic insults is vital to host defense against many bacterial, fungal, and viral pathogens. Several IFN-inducible GTPases play key roles in mediating inflammasome activation and providing host protection after bacterial or fungal infections, though their role in inflammasome activation after viral infection is less clear. Among the IFN-inducible GTPases, the expression of immunity-related GTPases (IRGs) varies widely across species for unknown reasons. Here, we report that IRGB10, but not IRGM1, IRGM2, or IRGM3, is required for NLRP3 inflammasome activation in response to influenza A virus (IAV) infection in mice. While IRGB10 functions to release inflammasome ligands in the context of bacterial and fungal infections, we found that IRGB10 facilitates endosomal maturation and nuclear translocation of IAV, thereby regulating viral replication. Corresponding with our in vitro results, we found that Irgb10-/- mice were more resistant to IAV-induced mortality than WT mice. The results of our study demonstrate a detrimental role of IRGB10 in host immunity in response to IAV and a novel function of IRGB10, but not IRGMs, in promoting viral translocation into the nucleus.


Assuntos
GTP Fosfo-Hidrolases/imunologia , Inflamassomos/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Infecções por Orthomyxoviridae/imunologia , Replicação Viral/imunologia , Animais , GTP Fosfo-Hidrolases/genética , Inflamassomos/genética , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Replicação Viral/genética
4.
Life Sci Alliance ; 5(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764207

RESUMO

The integrated stress response (ISR) regulates cellular homeostasis and cell survival following exposure to stressors. Cell death processes such as apoptosis and pyroptosis are known to be modulated by stress responses, but the role of the ISR in necroptosis is poorly understood. Necroptosis is an inflammatory, lytic form of cell death driven by the RIPK3-MLKL signaling axis. Here, we show that macrophages that have induced the ISR are protected from subsequent necroptosis. Consistent with a reduction in necroptosis, phosphorylation of RIPK1, RIPK3, and MLKL is reduced in macrophages pre-treated with ISR-inducing agents that are challenged with necroptosis-inducing triggers. The stress granule component DDX3X, which is involved in ISR-mediated regulation of pyroptosis, is not required for protecting ISR-treated cells from necroptosis. Disruption of stress granule assembly or knockdown of Perk restored necroptosis in pre-stressed cells. Together, these findings identify a critical role for the ISR in limiting necroptosis in macrophages.


Assuntos
Macrófagos/metabolismo , Necroptose , Estresse Fisiológico , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , RNA Helicases DEAD-box/metabolismo , Estresse do Retículo Endoplasmático , Fibroblastos , Técnicas de Silenciamento de Genes , Macrófagos/imunologia , Camundongos , Necroptose/genética , Necroptose/imunologia , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Grânulos de Estresse/metabolismo , Receptores Toll-Like , eIF-2 Quinase
5.
Front Immunol ; 12: 701341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777335

RESUMO

The essential micronutrient Selenium (Se) is co-translationally incorporated as selenocysteine into proteins. Selenoproteins contain one or more selenocysteines and are vital for optimum immunity. Interestingly, many pathogenic bacteria utilize Se for various biological processes suggesting that Se may play a role in bacterial pathogenesis. A previous study had speculated that Francisella tularensis, a facultative intracellular bacterium and the causative agent of tularemia, sequesters Se by upregulating Se-metabolism genes in type II alveolar epithelial cells. Therefore, we investigated the contribution of host vs. pathogen-associated selenoproteins in bacterial disease using F. tularensis as a model organism. We found that F. tularensis was devoid of any Se utilization traits, neither incorporated elemental Se, nor exhibited Se-dependent growth. However, 100% of Se-deficient mice (0.01 ppm Se), which express low levels of selenoproteins, succumbed to F. tularensis-live vaccine strain pulmonary challenge, whereas 50% of mice on Se-supplemented (0.4 ppm Se) and 25% of mice on Se-adequate (0.1 ppm Se) diet succumbed to infection. Median survival time for Se-deficient mice was 8 days post-infection while Se-supplemented and -adequate mice was 11.5 and >14 days post-infection, respectively. Se-deficient macrophages permitted significantly higher intracellular bacterial replication than Se-supplemented macrophages ex vivo, corroborating in vivo observations. Since Francisella replicates in alveolar macrophages during the acute phase of pneumonic infection, we hypothesized that macrophage-specific host selenoproteins may restrict replication and systemic spread of bacteria. F. tularensis infection led to an increased expression of several macrophage selenoproteins, suggesting their key role in limiting bacterial replication. Upon challenge with F. tularensis, mice lacking selenoproteins in macrophages (TrspM) displayed lower survival and increased bacterial burden in the lung and systemic tissues in comparison to WT littermate controls. Furthermore, macrophages from TrspM mice were unable to restrict bacterial replication ex vivo in comparison to macrophages from littermate controls. We herein describe a novel function of host macrophage-specific selenoproteins in restriction of intracellular bacterial replication. These data suggest that host selenoproteins may be considered as novel targets for modulating immune response to control a bacterial infection.


Assuntos
Francisella tularensis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Selenoproteínas/metabolismo , Tularemia/etiologia , Tularemia/metabolismo , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Camundongos , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/microbiologia , Pneumonia/patologia , Tularemia/mortalidade , Virulência/genética , Fatores de Virulência/genética
6.
mBio ; 12(3): e0105921, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154417

RESUMO

Burkholderia infections can result in serious diseases with high mortality, such as melioidosis, and they are difficult to treat with antibiotics. Innate immunity is critical for cell-autonomous clearance of intracellular pathogens like Burkholderia by regulating programmed cell death. Inflammasome-dependent inflammatory cytokine release and cell death contribute to host protection against Burkholderia pseudomallei and Burkholderia thailandensis; however, the contribution of apoptosis and necroptosis to protection is not known. Here, we found that bone marrow-derived macrophages (BMDMs) lacking key components of pyroptosis died via apoptosis during infection. BMDMs lacking molecules required for pyroptosis, apoptosis, and necroptosis (PANoptosis), however, were significantly resistant to B. thailandensis-induced cell death until later stages of infection. Consequently, PANoptosis-deficient BMDMs failed to limit B. thailandensis-induced cell-cell fusion, which permits increased intercellular spread and replication compared to wild-type or pyroptosis-deficient BMDMs. Respiratory B. thailandensis infection resulted in higher mortality in PANoptosis-deficient mice than in pyroptosis-deficient mice, indicating that, in the absence of pyroptosis, apoptosis is essential for efficient control of infection in vivo. Together, these findings suggest both pyroptosis and apoptosis are necessary for host-mediated control of Burkholderia infection. IMPORTANCEBurkholderia infections result in a high degree of mortality when left untreated; therefore, understanding the host immune response required to control infection is critical. In this study, we found a hierarchical cell death program utilized by infected cells to disrupt the intracellular niche of Burkholderia thailandensis, which limits bacterial intercellular spread, host cell-cell fusion, and bacterial replication. In macrophages, combined loss of key PANoptosis components results in extensive B. thailandensis infection-induced cell-cell fusion, bacterial replication, and increased cell death at later stages of infection compared with both wild-type (WT) and pyroptosis-deficient cells. During respiratory infection, mortality was increased in PANoptosis-deficient mice compared to pyroptosis-deficient mice, identifying an essential role for multiple cell death pathways in controlling B. thailandensis infection. These findings advance our understanding of the physiological role of programmed cell death in controlling Burkholderia infection.


Assuntos
Apoptose/imunologia , Infecções por Burkholderia/imunologia , Burkholderia/patogenicidade , Imunidade Inata , Macrófagos/microbiologia , Macrófagos/patologia , Animais , Burkholderia/imunologia , Caspases/classificação , Caspases/genética , Caspases/imunologia , Feminino , Masculino , Camundongos , Necroptose/imunologia , Piroptose/imunologia
7.
J Immunol ; 207(1): 115-124, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145059

RESUMO

Cellular stress can induce cytoplasmic ribonucleoprotein complexes called stress granules that allow the cells to survive. Stress granules are also central to cellular responses to infections, in which they can act as platforms for viral sensing or modulate innate immune signaling through pattern recognition receptors. However, the effect of innate immune signaling on stress granules is poorly understood. In this study, we report that prior induction of innate immune signaling through TLRs inhibited stress granule assembly in a TLR ligand dose-dependent manner in murine bone marrow-derived macrophages. Time course analysis suggests that TLR stimulation can reverse stress granule assembly even after it has begun. Additionally, both MYD88- and TRIF-mediated TLR signaling inhibited stress granule assembly in response to endoplasmic reticulum stress in bone marrow-derived macrophages and the chemotherapeutic drug oxaliplatin in murine B16 melanoma cells. This inhibition was not due to a decrease in expression of the critical stress granule proteins G3BP1 and DDX3X and was independent of IRAK1/4, JNK, ERK and P38 kinase activity but dependent on IKK complex kinase activity. Overall, we have identified the TLR-IKK complex signaling axis as a regulator of stress granule assembly-disassembly dynamics, highlighting cross-talk between processes that are critical in health and disease.


Assuntos
Quinase I-kappa B/imunologia , Imunidade Inata/imunologia , Grânulos de Estresse/imunologia , Receptores Toll-Like/imunologia , Animais , Células Cultivadas , Quinase I-kappa B/genética , Camundongos , Camundongos Knockout , Transdução de Sinais/imunologia
8.
Microorganisms ; 9(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946283

RESUMO

Francisella tularensis (Ft) is a Gram-negative, facultative intracellular coccobacillus that is the etiological agent of tularemia. Interestingly, the disease tularemia has variable clinical presentations that are dependent upon the route of infection with Ft. Two of the most likely routes of Ft infection include intranasal and intradermal, which result in pneumonic and ulceroglandular tularemia, respectively. While there are several differences between these two forms of tularemia, the most notable disparity is between mortality rates: the mortality rate following pneumonic tularemia is over ten times that of the ulceroglandular disease. Understanding the differences between intradermal and intranasal Ft infections is important not only for clinical diagnoses and treatment but also for the development of a safe and effective vaccine. However, the immune correlates of protection against Ft, especially within the context of infection by disparate routes, are not yet fully understood. Recent advances in different animal models have revealed new insights in the complex interplay of innate and adaptive immune responses, indicating dissimilar patterns in both responses following infection with Ft via different routes. Further investigation of these differences will be crucial to predicting disease outcomes and inducing protective immunity via vaccination or natural infection.

10.
J Biol Chem ; 296: 100579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33766561

RESUMO

Viruses and hosts have coevolved for millions of years, leading to the development of complex host-pathogen interactions. Influenza A virus (IAV) causes severe pulmonary pathology and is a recurrent threat to human health. Innate immune sensing of IAV triggers a complex chain of host responses. IAV has adapted to evade host defense mechanisms, and the host has coevolved to counteract these evasion strategies. However, the molecular mechanisms governing the balance between host defense and viral immune evasion is poorly understood. Here, we show that the host protein DEAD-box helicase 3 X-linked (DDX3X) is critical to orchestrate a multifaceted antiviral innate response during IAV infection, coordinating the activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, assembly of stress granules, and type I interferon (IFN) responses. DDX3X activated the NLRP3 inflammasome in response to WT IAV, which carries the immune evasive nonstructural protein 1 (NS1). However, in the absence of NS1, DDX3X promoted the formation of stress granules that facilitated efficient activation of type I IFN signaling. Moreover, induction of DDX3X-containing stress granules by external stimuli after IAV infection led to increased type I IFN signaling, suggesting that NS1 actively inhibits stress granule-mediated host responses and DDX3X-mediated NLRP3 activation counteracts this action. Furthermore, the loss of DDX3X expression in myeloid cells caused severe pulmonary pathogenesis and morbidity in IAV-infected mice. Together, our findings show that DDX3X orchestrates alternate modes of innate host defense which are critical to fight against NS1-mediated immune evasion strategies during IAV infection.


Assuntos
RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Inflamassomos/metabolismo , Vírus da Influenza A/fisiologia , Interferon Tipo I/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Vírus da Influenza A/imunologia , Camundongos
11.
Nat Commun ; 12(1): 496, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479228

RESUMO

Chronic inflammation during many diseases is associated with bone loss. While interferons (IFNs) are often inhibitory to osteoclast formation, the complex role that IFN and interferon-stimulated genes (ISGs) play in osteoimmunology during inflammatory diseases is still poorly understood. We show that mice deficient in IFN signaling components including IFN alpha and beta receptor 1 (IFNAR1), interferon regulatory factor 1 (IRF1), IRF9, and STAT1 each have reduced bone density and increased osteoclastogenesis compared to wild type mice. The IFN-inducible guanylate-binding proteins (GBPs) on mouse chromosome 3 (GBP1, GBP2, GBP3, GBP5, GBP7) are required to negatively regulate age-associated bone loss and osteoclastogenesis. Mechanistically, GBP2 and GBP5 both negatively regulate in vitro osteoclast differentiation, and loss of GBP5, but not GBP2, results in greater age-associated bone loss in mice. Moreover, mice deficient in GBP5 or chromosome 3 GBPs have greater LPS-mediated inflammatory bone loss compared to wild type mice. Overall, we find that GBP5 contributes to restricting age-associated and inflammation-induced bone loss by negatively regulating osteoclastogenesis.


Assuntos
Reabsorção Óssea/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Interferons/metabolismo , Osteoclastos/metabolismo , Osteogênese/fisiologia , Fatores Etários , Animais , Reabsorção Óssea/genética , Diferenciação Celular/genética , Fusão Celular , Células Cultivadas , Proteínas de Ligação ao GTP/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Osteoclastos/citologia , Osteogênese/genética , Transdução de Sinais/genética
14.
Curr Opin Microbiol ; 59: 42-49, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32829024

RESUMO

The immune system has evolved multiple mechanisms to restrict microbial infections and regulate inflammatory responses. Without appropriate regulation, infection-induced inflammatory pathology can be deadly. The innate immune system recognizes the microbial molecules conserved in many pathogens and engages a rapid response by producing inflammatory mediators and activating programmed cell death pathways, including pyroptosis, apoptosis, and necroptosis. Activation of pattern recognition receptors, in combination with inflammatory cytokine-induced signaling through death domain-containing receptors, initiates a highly interconnected cell death process called PANoptosis (pyroptosis, apoptosis, necroptosis). Broadly speaking, PANoptosis is critical for restricting a wide range of pathogens (including bacteria, viruses, fungi, and parasites), which we describe in this review. We propose that re-examining the role of cell death and inflammatory cytokines through the lens of PANoptosis will advance our understanding of host-pathogen evolution and may reveal new treatment strategies for controlling a wide range of infectious diseases.


Assuntos
Apoptose , Morte Celular , Interações Hospedeiro-Patógeno , Infecções , Necroptose , Piroptose , Apoptose/imunologia , Fenômenos Fisiológicos Bacterianos/imunologia , Evolução Biológica , Morte Celular/fisiologia , Fungos/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Infecções/imunologia , Infecções/microbiologia , Infecções/virologia , Necroptose/imunologia , Piroptose/imunologia , Fenômenos Fisiológicos Virais/imunologia
15.
Nature ; 588(7839): 688-692, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268895

RESUMO

Inflammasomes are important sentinels of innate immune defence that are activated in response to diverse stimuli, including pathogen-associated molecular patterns (PAMPs)1. Activation of the inflammasome provides host defence against aspergillosis2,3, which is a major health concern for patients who are immunocompromised. However, the Aspergillus fumigatus PAMPs that are responsible for inflammasome activation are not known. Here we show that the polysaccharide galactosaminogalactan (GAG) of A. fumigatus is a PAMP that activates the NLRP3 inflammasome. The binding of GAG to ribosomal proteins inhibited cellular translation machinery, and thus activated the NLRP3 inflammasome. The galactosamine moiety bound to ribosomal proteins and blocked cellular translation, which triggered activation of the NLRP3 inflammasome. In mice, a GAG-deficient Aspergillus mutant (Δgt4c) did not elicit protective activation of the inflammasome, and this strain exhibited enhanced virulence. Moreover, administration of GAG protected mice from colitis induced by dextran sulfate sodium in an inflammasome-dependent manner. Thus, ribosomes connect the sensing of this fungal PAMP to the activation of an innate immune response.


Assuntos
Aspergilose/prevenção & controle , Aspergillus fumigatus/metabolismo , Inflamassomos/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Polissacarídeos/metabolismo , Animais , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/imunologia , Biofilmes , Colite/induzido quimicamente , Colite/prevenção & controle , Sulfato de Dextrana , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Imunidade Inata , Inflamassomos/imunologia , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Polissacarídeos/imunologia , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
16.
Curr Opin Immunol ; 67: 95-105, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33242752

RESUMO

The innate immune system, the first line of defense against pathogens and host tissue damage, initiates pro-inflammatory responses which, when dysregulated, promote inflammation to drive a broad range of autoimmune diseases. Immunomodulatory therapies have been developed to successfully treat several autoimmune diseases, but still many others lack effective treatments. Here, we explore recent advances in how the innate immune system contributes to autoinflammation, from the innate immune sensors that initiate immune responses to how this system regulates the activation of programmed cell death pathways including pyroptosis, apoptosis, necroptosis, and PANoptosis, which involves machinery from the pyroptotic, apoptotic, and necroptotic pathways. Recent advances in our understanding of innate immunity raise important considerations for developing new inflammatory disease treatments that target innate immune signaling and programmed cell death pathways.


Assuntos
Doenças Autoimunes/imunologia , Sistema Imunitário/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Animais , Humanos
17.
Artigo em Inglês | MEDLINE | ID: mdl-32547960

RESUMO

Programmed cell death plays crucial roles in organismal development and host defense. Recent studies have highlighted mechanistic overlaps and extensive, multifaceted crosstalk between pyroptosis, apoptosis, and necroptosis, three programmed cell death pathways traditionally considered autonomous. The growing body of evidence, in conjunction with the identification of molecules controlling the concomitant activation of all three pathways by pathological triggers, has led to the development of the concept of PANoptosis. During PANoptosis, inflammatory cell death occurs through the collective activation of pyroptosis, apoptosis, and necroptosis, which can circumvent pathogen-mediated inhibition of individual death pathways. Many of the molecular details of this emerging pathway are unclear. Here, we describe the activation of PANoptosis by bacterial and viral triggers and report protein interactions that reveal the formation of a PANoptosome complex. Infection of macrophages with influenza A virus, vesicular stomatitis virus, Listeria monocytogenes, or Salmonella enterica serovar Typhimurium resulted in robust cell death and the hallmarks of PANoptosis activation. Combined deletion of the PANoptotic components caspase-1 (CASP1), CASP11, receptor-interacting serine/threonine-protein kinase 3 (RIPK3), and CASP8 largely protected macrophages from cell death induced by these pathogens, while deletion of individual components provided reduced or no protection. Further, molecules from the pyroptotic, apoptotic, and necroptotic cell death pathways interacted to form a single molecular complex that we have termed the PANoptosome. Overall, our study identifies pathogens capable of activating PANoptosis and the formation of a PANoptosome complex.


Assuntos
Apoptose , Necroptose , Piroptose , Animais , Caspase 1 , Caspase 8 , Caspases Iniciadoras , Vírus da Influenza A , Listeria monocytogenes , Macrófagos , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores , Salmonella typhimurium , Vírus da Estomatite Vesicular Indiana
18.
Cell Res ; 30(4): 315-327, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32152420

RESUMO

Inflammasomes are multi-component signaling complexes critical to the initiation of pyroptotic cell death in response to invading pathogens and cellular damage. A number of innate immune receptors have been reported to serve as inflammasome sensors. Activation of these sensors leads to the proteolytic activation of caspase-1, a proinflammatory caspase responsible for the cleavage of proinflammatory cytokines interleukin-1ß and interleukin-18 and the effector of pyroptotic cell death, gasdermin D. Though crucial to the innate immune response to infection, dysregulation of inflammasome activation can lead to the development of inflammatory diseases, neurodegeneration, and cancer. Therefore, clinical interest in the modulation of inflammasome activation is swiftly growing. As such, it is imperative to develop a mechanistic understanding of the regulation of these complexes. In this review, we divide the regulation of inflammasome activation into three parts. We discuss the transcriptional regulation of inflammasome components and related proteins, the post-translational mechanisms of inflammasome activation, and advances in the understanding of the structural basis of inflammasome activation.


Assuntos
Imunidade Inata/imunologia , Inflamassomos/metabolismo , Piroptose/imunologia , Animais , Caspase 1/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Transdução de Sinais
19.
PLoS Pathog ; 16(3): e1008364, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150572

RESUMO

Innate immunity responds to pathogens by producing alarm signals and activating pathways that make host cells inhospitable for pathogen replication. The intracellular bacterium Burkholderia thailandensis invades the cytosol, hijacks host actin, and induces cell fusion to spread to adjacent cells, forming multinucleated giant cells (MNGCs) which promote bacterial replication. We show that type I interferon (IFN) restricts macrophage MNGC formation during B. thailandensis infection. Guanylate-binding proteins (GBPs) expressed downstream of type I IFN were required to restrict MNGC formation through inhibition of bacterial Arp2/3-dependent actin motility during infection. GTPase activity and the CAAX prenylation domain were required for GBP2 recruitment to B. thailandensis, which restricted bacterial actin polymerization required for MNGC formation. Consistent with the effects in in vitro macrophages, Gbp2-/-, Gbp5-/-, GbpChr3-KO mice were more susceptible to intranasal infection with B. thailandensis than wildtype mice. Our findings reveal that IFN and GBPs play a critical role in restricting cell-cell fusion and bacteria-induced pathology during infection.


Assuntos
Infecções por Burkholderia/imunologia , Burkholderia/imunologia , Proteínas de Ligação ao GTP/imunologia , Células Gigantes/imunologia , Macrófagos/imunologia , Doenças Nasais/imunologia , Prenilação de Proteína/imunologia , Animais , Infecções por Burkholderia/genética , Infecções por Burkholderia/patologia , Fusão Celular , Proteínas de Ligação ao GTP/genética , Células Gigantes/microbiologia , Células Gigantes/patologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Doenças Nasais/genética , Doenças Nasais/microbiologia , Doenças Nasais/patologia
20.
Physiology (Bethesda) ; 35(2): 112-124, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32027562

RESUMO

The innate immune system recognizes conserved pathogen-associated molecular patterns and produces inflammatory cytokines that direct downstream immune responses. The inappropriate localization of DNA within the cell cytosol or endosomal compartments indicates that a cell may either be infected by a DNA virus or bacterium, or has problems with its own nuclear integrity. This DNA is sensed by certain receptors that mediate cytokine production and, in some cases, initiate an inflammatory and lytic form of cell death called pyroptosis. Dysregulation of these DNA-sensing pathways is thought to contribute to autoimmune diseases and the development of cancer. In this review, we will discuss the DNA sensors Toll-like receptor 9 (TLR9), cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), absent in melanoma 2 (AIM2), and interferon gamma-inducible 16 (IFI16), their ligands, and their physiological significance. We will also examine the less-well-understood DEAH- and DEAD-box helicases DHX9, DHX36, DDX41, and RNA polymerase III, each of which may play an important role in DNA-mediated innate immunity.


Assuntos
Citocinas/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA/imunologia , Imunidade Inata/imunologia , Proteínas de Neoplasias/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , DNA/genética , DNA/metabolismo , Humanos , Proteínas de Neoplasias/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA