Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Gene ; 917: 148441, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608795

RESUMO

Type 2 diabetes (T2D) is posing a serious public health concern with a considerable impact on human life and health expenditures worldwide. The disease develops when insulin plasma level is insufficient for coping insulin resistance, caused by the decline of pancreatic ß-cell function and mass. In ß-cells, the lipotoxicity exerted by saturated free fatty acids in particular palmitate (PA), which is chronically elevated in T2D, plays a major role in ß-cell dysfunction and mass. However, there is a lack of human relevant in vitro model to identify the underlying mechanism through which palmitate induces ß-cell failure. In this frame, we have previously developed a cutting-edge 3D spheroid model of ß-like cells derived from human induced pluripotent stem cells. In the present work, we investigated the signaling pathways modified by palmitate in ß-like cells derived spheroids. When compared to the 2D monolayer cultures, the transcriptome analysis (FDR set at  0.1) revealed that the 3D spheroids upregulated the pancreatic markers (such as GCG, IAPP genes), lipids metabolism and transporters (CD36, HMGSC2 genes), glucose transporter (SLC2A6). Then, the 3D spheroids are exposed to PA 0.5 mM for 72 h. The differential analysis demonstrated that 32 transcription factors and 135 target genes were mainly modulated (FDR set at  0.1) including the upregulation of lipid and carbohydrates metabolism (HMGSC2, LDHA, GLUT3), fibrin metabolism (FGG, FGB), apoptosis (CASP7). The pathway analysis using the 135 selected targets extracted the fibrin related biological process and wound healing in 3D PA treated conditions. An overall pathway gene set enrichment analysis, performed on the overall gene set (with pathway significance cutoff at 0.2), highlighted that PA perturbs the citrate cycle, FOXO signaling and Hippo signaling as observed in human islets studies. Additional RT-PCR confirmed induction of inflammatory (IGFBP1, IGFBP3) and cell growth (CCND1, Ki67) pathways by PA. All these changes were associated with unaffected glucose-stimulated insulin secretion (GSIS), suggesting that they precede the defect of insulin secretion and death induced by PA. Overall, we believe that our data demonstrate the potential of our spheroid 3D islet-like cells to investigate the pancreatic-like response to diabetogenic environment.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Ácido Palmítico , Esferoides Celulares , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Ácido Palmítico/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Perfilação da Expressão Gênica/métodos , Transcriptoma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética
2.
Mol Omics ; 19(10): 823, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37800443

RESUMO

Correction for 'Generation of ß-like cell subtypes from differentiated human induced pluripotent stem cells in 3D spheroids' by Lisa Morisseau et al., Mol. Omics, 2023, https://doi.org/10.1039/d3mo00050h.

3.
Mol Omics ; 19(10): 810-822, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37698079

RESUMO

Since the identification of four different pancreatic ß-cell subtypes and bi-hormomal cells playing a role in the diabetes pathogenesis, the search for in vitro models that mimics such cells heterogeneity became a key priority in experimental and clinical diabetology. We investigated the potential of human induced pluripotent stem cells to lead to the development of the different ß-cells subtypes in honeycomb microwell-based 3D spheroids. The glucose-stimulated insulin secretion confirmed the spheroids functionality. Then, we performed a single cell RNA sequencing of the spheroids. Using a knowledge-based analysis with a stringency on the pancreatic markers, we extracted the ß-cells INS+/UCN3+ subtype (11%; ß1-like cells), the INS+/ST8SIA1+/CD9- subtype (3%, ß3-like cells) and INS+/CD9+/ST8SIA1-subtype (1%; ß2-like cells) consistently with literature findings. We did not detect the INS+/ST8SIA1+/CD9+ cells (ß4-like cells). Then, we also identified four bi-hormonal cells subpopulations including δ-like cells (INS+/SST+, 6%), γ-like cells (INS+/PPY+, 3%), α-like-cells (INS+/GCG+, 6%) and ε-like-cells (INS+/GHRL+, 2%). Using data-driven clustering, we extracted four progenitors' subpopulations (with the lower level of INS gene) that included one population highly expressing inhibin genes (INHBA+/INHBB+), one population highly expressing KCNJ3+/TPH1+, one population expressing hepatocyte-like lineage markers (HNF1A+/AFP+), and one population expressing stem-like cell pancreatic progenitor markers (SOX2+/NEUROG3+). Furthermore, among the cycling population we found a large number of REST+ cells and CD9+ cells (CD9+/SPARC+/REST+). Our data confirm that our differentiation leads to large ß-cell heterogeneity, which can be used for investigating ß-cells plasticity under physiological and pathophysiological conditions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Humanos , Diferenciação Celular/genética , Células Secretoras de Insulina/metabolismo , Pâncreas/metabolismo , Secreção de Insulina
4.
Pharmaceutics ; 15(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111699

RESUMO

Diabetes poses major economic, social, and public health challenges in all countries worldwide. Besides cardiovascular disease and microangiopathy, diabetes is a leading cause of foot ulcers and lower limb amputations. With the continued rise of diabetes prevalence, it is expected that the future burden of diabetes complications, early mortality, and disabilities will increase. The diabetes epidemic is partly caused by the current lack of clinical imaging diagnostic tools, the timely monitoring of insulin secretion and insulin-expressing cell mass (beta (ß)-cells), and the lack of patients' adherence to treatment, because some drugs are not tolerated or invasively administrated. In addition to this, there is a lack of efficient topical treatment capable of stopping the progression of disabilities, in particular for treating foot ulcers. In this context, polymer-based nanostructures garnered significant interest due to their tunable physicochemical characteristics, rich diversity, and biocompatibility. This review article emphasizes the last advances and discusses the prospects in the use of polymeric materials as nanocarriers for ß-cell imaging and non-invasive drug delivery of insulin and antidiabetic drugs in the management of blood glucose and foot ulcers.

5.
Cells ; 12(6)2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36980281

RESUMO

Improvement of insulin secretion by pancreatic ß-cells and preservation of their mass are the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the Helodermatidae family, has provided the proof of concept that antidiabetic drugs directly targeting pancreatic ß-cells can emerge from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants suggests that they contain some promising active substances such as polyphenols and alkaloids, which could be active as insulin secretagogues and ß-cell protectors. In this review, we discuss the potential of several polyphenols, alkaloids and venom peptides from snake, frogs, scorpions and cone snails. These molecules could contribute to the development of new efficient antidiabetic medicines targeting ß-cells, which would tackle the progression of the disease.


Assuntos
Alcaloides , Diabetes Mellitus Tipo 2 , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Peçonhas/farmacologia , Peçonhas/uso terapêutico , Peptídeos/farmacologia , Alcaloides/farmacologia , Alcaloides/uso terapêutico
6.
Nanoscale ; 14(39): 14683-14694, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36165351

RESUMO

Pancreatic islet amyloid deposition is a pathological hallmark of Type 2 diabetes (T2D), contributing to reduced functional ß-cell mass. Islet amyloids result not only from the aggregation and fibrillation of human islet amyloid polypeptide (hIAPP), but also from beta-amyloid 42 (Aß42), the key amyloidogenic peptide linked to Alzheimer's disease. Importantly, Aß42 and hIAPP aggregates (IAPP:Aß42) can interact with each other and form some harmful heterocomplex fibrils. While it is well-documented that hIAPP aggregation occurs only when islets are exposed to a diabetic environment, including hyperglycemia and/or elevated concentrations of saturated fatty acids (SFAs), it remains unclear if hIAPP and IAPP:Aß42 heteromer fibrillations are directly or indirectly triggered by this environment. In this study, we show the interplay between high glucose concentrations and palmitate as the SFA in the aggregation of hIAPP. In addition, we outline that the interaction of hIAPP and Aß42 leads to the formation of complex protein aggregates, which are toxic to ß-cells. Carbon nanocolloids in the form of positively charged carbon quantum dots (CQD-pos) efficiently prevent single amyloid aggregation and the formation of IAPP:Aß42 heterocomplexes. We provide clear evidence with this study that the diabetogenic environment of islets could directly contribute to the formation of homomeric and heteromeric amyloid aggregates and fibrils in T2D. We also propose carbon nanocolloids as biocompatible nanomaterials for developing innovative therapeutic strategies that prevent the decline of functional ß-cell mass.


Assuntos
Diabetes Mellitus Tipo 2 , Pontos Quânticos , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas , Carbono , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos , Glucose , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Palmitatos , Agregados Proteicos , Pontos Quânticos/toxicidade
7.
Nanoscale Horiz ; 7(2): 174-184, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35039816

RESUMO

Painless and controlled on-demand drug delivery is the ultimate goal for the management of various chronic diseases, including diabetes. To achieve this purpose, microneedle patches are gaining increased attention. While degradable microneedle (MN) arrays are widely employed, the use of non-dissolving MN patches remains a challenge to overcome. In this study, we demonstrate that crosslinking gelatin methacrylate with polyethylene glycol diacrylate (PEGDA) is potent for engineering non-dissolving MN arrays. Incorporation of MoS2 nanosheets as a photothermal component into MN hydrogels results in MNs featuring on-demand release properties. An optimized MoS2-MN array patch formed using a hydrogel solution containing 500 µg mL-1 of MoS2 and photochemically crosslinked for 5 min shows required mechanical behavior under a normal compressive load to penetrate the stratum corneum of mice or pig skin and allows the delivery of macromolecular therapeutics such as insulin upon swelling. Using ex vivo and in vivo models, we show that the MoS2-MN patches can be used for loading and releasing insulin for therapeutic purposes. Indeed, transdermal administration of insulin loaded into MoS2-MN patches reduces blood glucose levels in C57BL/6 mice and mini-pigs comparably to subcutaneously injected insulin. We believe that this on-demand delivery system might alter the current insulin therapies and might be a potential approach for delivery of other proteins.


Assuntos
Gelatina , Insulina , Administração Cutânea , Animais , Insulina/uso terapêutico , Metacrilatos , Camundongos , Camundongos Endogâmicos C57BL , Agulhas , Suínos , Porco Miniatura
8.
ACS Appl Bio Mater ; 5(2): 771-778, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35026943

RESUMO

Electrospun fiber mats loaded with therapeutics have gained considerable attention as a versatile tool in the biomedical field. While these bandages are largely based on fast-dissolving polymers to release the cargo, stimuli-responsive fiber mats have the advantages of providing a timely and spatially controlled drug delivery platform, which can be refilled and reused several times. These benefits make electrospun fiber patches original platforms for painless and convenient on-demand hormone release. Because of the high need of more convenient and non-invasive methods for delivering insulin, a hormone that is currently used to treat hundred million people with diabetes worldwide, we have investigated the tremendous potential of reduced graphene oxide modified poly(acrylic acid) based fiber mats as an original platform for buccal and corneal insulin delivery on-demand. The PAA@rGO hydrogel-like fibers rendered water-insoluble by incorporating ß-cyclodextrin, followed by thermal cross-linking, which showed adequate tensile strength along with high adsorption capacity of insulin at pH 7 and good recyclability. The fiber mats maintained good fibrous morphology and high loading efficiency even after five loading-release cycles. The mucoadhesive nature of the fibers allowed their application for insulin delivery via the eye cornea and the buccal mouth lining, as evidenced in ex vivo studies. Insulin loaded PAA@rGO hydrogel-like fibers showed an insulin flux via buccal lining of pigs of 16.6 ± 2.9 µg cm-2 h-1 and 24.3 ± 3.1 µg cm-2 h-1 for porcine cornea. Testing on healthy adult volunteers confirmed the excellent, mucoadhesive nature of the bandage, with three out of six volunteers feeling completely comfortable (note 8.3) while wearing the patches in the buccal cavity.


Assuntos
Insulina , Mucosa Bucal , Administração Bucal , Animais , Córnea , Humanos , Hidrogéis , Insulina Regular Humana , Suínos
9.
Cell Mol Life Sci ; 78(1): 287-298, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32189007

RESUMO

Unveiling the key pathways underlying postnatal beta-cell proliferation can be instrumental to decipher the mechanisms of beta-cell mass plasticity to increased physiological demand of insulin during weight gain and pregnancy. Using transcriptome and global Serine Threonine Kinase activity (STK) analyses of islets from newborn (10 days old) and adult rats, we found that highly proliferative neonatal rat islet cells display a substantially elevated activity of the mitogen activated protein 3 kinase 12, also called dual leucine zipper-bearing kinase (Dlk). As a key upstream component of the c-Jun amino terminal kinase (Jnk) pathway, Dlk overexpression was associated with increased Jnk3 activity and was mainly localized in the beta-cell cytoplasm. We provide the evidence that Dlk associates with and activates Jnk3, and that this cascade stimulates the expression of Ccnd1 and Ccnd2, two essential cyclins controlling postnatal beta-cell replication. Silencing of Dlk or of Jnk3 in neonatal islet cells dramatically hampered primary beta-cell replication and the expression of the two cyclins. Moreover, the expression of Dlk, Jnk3, Ccnd1 and Ccnd2 was induced in high replicative islet beta cells from ob/ob mice during weight gain, and from pregnant female rats. In human islets from non-diabetic obese individuals, DLK expression was also cytoplasmic and the rise of the mRNA level was associated with an increase of JNK3, CCND1 and CCND2 mRNA levels, when compared to islets from lean and obese patients with diabetes. In conclusion, we find that activation of Jnk3 signalling by Dlk could be a key mechanism for adapting islet beta-cell mass during postnatal development and weight gain.


Assuntos
Células Secretoras de Insulina/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Animais , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclina D2/genética , Ciclina D2/metabolismo , Feminino , Glucose/farmacologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 10 Ativada por Mitógeno/genética , Obesidade/metabolismo , Obesidade/patologia , Pâncreas/crescimento & desenvolvimento , Pâncreas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
10.
Behav Res Ther ; 136: 103777, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271392

RESUMO

Although memory of past experiences is crucial for the ability to transfer knowledge to new situations, surprisingly little research has directly investigated the relationship between memory and generalization. The present study sought to investigate how the perceptual memory of a trained stimulus influences generalization to similar stimuli. Forty participants underwent a fear conditioning procedure on Day 1, and separate memory recall and generalization tests on Day 2. We focused on two aspects of perceptual memory: namely memory bias (i.e., over- or underestimation of stimulus magnitude) and uncertainty. We found that memory bias predicted the pattern of generalized self-reported (expectancy ratings) and psychophysiological responses (fear-potentiated startle responses). Memory uncertainty was measured in two ways: self-reported uncertainty ratings and variability in stimulus recall. We found that higher levels of self-reported memory uncertainty corresponded with a broader generalization gradient on US expectancy, while greater variability in memory recall was associated with a broader generalization gradient on fear-potentiated startle responses. Taken together, our findings suggest that memory is an important determinant of generalized behavior and illustrate the need to account for these interindividual differences in perceptual memory when examining the generalization of learned responses.


Assuntos
Condicionamento Clássico , Generalização Psicológica , Medo , Humanos , Reflexo de Sobressalto , Incerteza
11.
Nanoscale Horiz ; 5(4): 663-670, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32226966

RESUMO

Transdermal patches have become a widely used approach for painless delivery of drugs. One major current limitation of these systems remains the restricted skin permeation of proteins and peptides as exemplified by insulin, necessitating different considerations for their successful transdermal delivery. We present a novel patch design based on the integration of nano-engineered heating elements on polyimide substrates for electrothermal transdermal therapy. The results reveal that tuning of the electrical resistivity of an array of gold nanoholes, patterned on polyimide, facilitates a fast-responding electrothermal skin patch, while post-coating with reduced graphene oxide offers capabilities for drug encapsulation, like insulin. Application of insulin-loaded patches to the skin of mice resulted in blood glucose regulation within minutes. While demonstrated for insulin, the skin patches might be well adapted to other low and high molecular weight therapeutic drugs, enabling on-demand electrothermal transdermal delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Insulina Regular Humana/administração & dosagem , Adesivo Transdérmico , Dispositivos Eletrônicos Vestíveis , Administração Cutânea , Animais , Sistemas de Liberação de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Ouro/química , Grafite/química , Camundongos , Nanoporos
12.
Nanoscale ; 11(34): 15810-15820, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31270521

RESUMO

Drug loaded hydrogels have proven to be versatile controlled-release systems. We report here on heat active hydrogel formation by mixing graphene oxide (GO) or carboxyl enriched reduced graphene oxide (rGO-COOH) with metformin hydrochloride, an insulin sensitizer drug currently used as the first line therapy to treat patients with type 2 diabetes. The driving forces of the gelation process between the graphene-based nanomaterial and metformin are hydrogen bonding and electrostatic interactions, weakened at elevated temperature. Using the excellent photothermal properties of the graphene matrixes, we demonstrate that these supramolecular drug reservoirs can be photothermally activated for transdermal metformin delivery. A sustained delivery of metformin was achieved using a laser power of 1 W cm-2. In vitro assessment of the key target Glucose-6 Phosphatase (G6P) gene expression using a human hepatocyte model confirmed that metformin activity was unaffected by photothermal activation. In vivo, metformin was detected in mice plasma at 1 h post-activation of the metformin loaded rGO-COOH gel.


Assuntos
Sistemas de Liberação de Medicamentos , Grafite , Hidrogéis , Raios Infravermelhos , Metformina , Absorção Cutânea , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Grafite/química , Grafite/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Metformina/química , Metformina/farmacocinética , Metformina/farmacologia , Camundongos
13.
Diabetes ; 67(7): 1310-1321, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29728363

RESUMO

In type 2 diabetes (T2D), hepatic insulin resistance is strongly associated with nonalcoholic fatty liver disease (NAFLD). In this study, we hypothesized that the DNA methylome of livers from patients with T2D compared with livers of individuals with normal plasma glucose levels can unveil some mechanism of hepatic insulin resistance that could link to NAFLD. Using DNA methylome and transcriptome analyses of livers from obese individuals, we found that hypomethylation at a CpG site in PDGFA (encoding platelet-derived growth factor α) and PDGFA overexpression are both associated with increased T2D risk, hyperinsulinemia, increased insulin resistance, and increased steatohepatitis risk. Genetic risk score studies and human cell modeling pointed to a causative effect of high insulin levels on PDGFA CpG site hypomethylation, PDGFA overexpression, and increased PDGF-AA secretion from the liver. We found that PDGF-AA secretion further stimulates its own expression through protein kinase C activity and contributes to insulin resistance through decreased expression of insulin receptor substrate 1 and of insulin receptor. Importantly, hepatocyte insulin sensitivity can be restored by PDGF-AA-blocking antibodies, PDGF receptor inhibitors, and by metformin, opening therapeutic avenues. Therefore, in the liver of obese patients with T2D, the increased PDGF-AA signaling contributes to insulin resistance, opening new therapeutic avenues against T2D and possibly NAFLD.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Fígado/metabolismo , Obesidade/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Adulto , Estudos de Casos e Controles , Células Cultivadas , Metilação de DNA , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Epigênese Genética/fisiologia , Feminino , Predisposição Genética para Doença , Humanos , Resistência à Insulina/genética , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Transdução de Sinais/genética , Regulação para Cima/genética
14.
Mol Metab ; 5(12): 1200-1207, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27900262

RESUMO

OBJECTIVE: The goal of the study was to investigate the role of histone deacetylases (HDACs) in adipocyte function associated with obesity and hypoxia. METHODS: Total proteins and RNA were prepared from human visceral adipose tissues (VAT) of human obese and normal weight subjects and from white adipose tissue (WAT) of C57Bl6-Rj mice fed a normal or high fat diet (HFD) for 16 weeks. HDAC activity was measured by colorimetric assay whereas the gene and protein expression were monitored by real-time PCR and by western blotting, respectively. RNA interference (RNAi) was used to silence the expression of genes in 3T3-L1 adipocytes. RESULTS: Total HDAC activity was decreased in VAT and WAT from obese individuals and from mice fed a HFD, respectively. The HDAC activity reduction was associated with decreased HDAC5/Hdac5 and HDAC6/Hdac6 expression in human and mice adipocyte fraction. Similarly, hypoxia hampered total Hdac activity and reduced the expression of Hdac5 and Hdac6 in 3T3-L1 adipocytes. The decrease of both Hdac5 and Hdac6 by hypoxia was associated with altered expression of adipokines and of the inducible cAMP early repressor (Icer), a key repressor that is defective in human and mice obesity. Silencing of Icer in adipocytes reproduced the changes in adipokine levels under hypoxia and obesity, suggesting a causative effect. Finally, modeling the defect of the two Hdacs in adipocytes by RNAi or selective inhibitors mimicked the effects of hypoxia on the expression of Icer, leading to impairment of insulin-induced glucose uptake. CONCLUSION: Hdac5 and Hdac6 expression are required for the adequate expression of Icer and adipocyte function. Altered adipose expression of the two Hdacs in obesity by hypoxia may contribute to the development of metabolic abnormalities.


Assuntos
Adipócitos/enzimologia , Desacetilase 6 de Histona/biossíntese , Histona Desacetilases/biossíntese , Obesidade/enzimologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/enzimologia , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Hipóxia Celular/fisiologia , Modulador de Elemento de Resposta do AMP Cíclico/biossíntese , Modulador de Elemento de Resposta do AMP Cíclico/genética , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Dieta Hiperlipídica , Feminino , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia
15.
PLoS One ; 11(9): e0163046, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27636901

RESUMO

Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment.


Assuntos
Estresse do Retículo Endoplasmático , Ilhotas Pancreáticas/fisiopatologia , Lipoproteínas LDL/fisiologia , Estresse Oxidativo , Acetilcisteína/administração & dosagem , Fator 6 Ativador da Transcrição/metabolismo , Animais , Antioxidantes/administração & dosagem , Apoptose , Biomarcadores/metabolismo , Linhagem Celular , Endorribonucleases/metabolismo , Humanos , Peróxido de Hidrogênio/administração & dosagem , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo
16.
J Diabetes Res ; 2016: 9158562, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26665154

RESUMO

Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 expression is required for preserving beta cell survival and function in response to palmitate. Chronic exposure of MIN6 and isolated rat islets cells to palmitate led to reduction of the IB1 mRNA and protein content. Diminution of IB1 mRNA and protein level relied on the inducible cAMP early repressor activity and proteasome-mediated degradation, respectively. Suppression of IB1 level mimicked the harmful effects of palmitate on the beta cell survival and GSIS. Conversely, ectopic expression of IB1 counteracted the deleterious effects of palmitate on the beta cell survival and insulin secretion. These findings highlight the importance in preserving the IB1 content for protecting beta cell against lipotoxicity in diabetes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ácido Palmítico/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Sobrevivência Celular/genética , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
17.
J Diabetes Res ; 2014: 618652, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24734255

RESUMO

Pancreatic beta-cell function and mass are markedly adaptive to compensate for the changes in insulin requirement observed during several situations such as pregnancy, obesity, glucocorticoids excess, or administration. This requires a beta-cell compensation which is achieved through a gain of beta-cell mass and function. Elucidating the physiological mechanisms that promote functional beta-cell mass expansion and that protect cells against death, is a key therapeutic target for diabetes. In this respect, several recent studies have emphasized the instrumental role of microRNAs in the control of beta-cell function. MicroRNAs are negative regulators of gene expression, and are pivotal for the control of beta-cell proliferation, function, and survival. On the one hand, changes in specific microRNA levels have been associated with beta-cell compensation and are triggered by hormones or bioactive peptides that promote beta-cell survival and function. Conversely, modifications in the expression of other specific microRNAs contribute to beta-cell dysfunction and death elicited by diabetogenic factors including, cytokines, chronic hyperlipidemia, hyperglycemia, and oxidized LDL. This review underlines the importance of targeting the microRNA network for future innovative therapies aiming at preventing the beta-cell decline in diabetes.


Assuntos
Alostase , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , MicroRNAs/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Animais , Diferenciação Celular , Proliferação de Células , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Insulina/biossíntese , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/patologia , Masculino , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/patologia , Estado Pré-Diabético/fisiopatologia , Gravidez
18.
J Diabetes Res ; 2014: 195739, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25610877

RESUMO

Elevation of the dietary saturated fatty acid palmitate contributes to the reduction of functional beta cell mass in the pathogenesis of type 2 diabetes. The diabetogenic effect of palmitate is achieved by increasing beta cell death through induction of the endoplasmic reticulum (ER) stress markers including activating transcription factor 3 (Atf3) and CAAT/enhancer-binding protein homologous protein-10 (Chop). In this study, we investigated whether treatment of beta cells with the MS-275, a HDAC1 and HDAC3 activity inhibitor which prevents beta cell death elicited by cytokines, is beneficial for combating beta cell dysfunction caused by palmitate. We show that culture of isolated human islets and MIN6 cells with MS-275 reduced apoptosis evoked by palmitate. The protective effect of MS-275 was associated with the attenuation of the expression of Atf3 and Chop. Silencing of HDAC3, but not of HDAC1, mimicked the effects of MS-275 on the expression of the two ER stress markers and apoptosis. These data point to HDAC3 as a potential drug target for preserving beta cells against lipotoxicity in diabetes.


Assuntos
Benzamidas/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases , Células Secretoras de Insulina/efeitos dos fármacos , Ácido Palmítico/toxicidade , Piridinas/farmacologia , Fator 3 Ativador da Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citoproteção , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Camundongos , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Fator de Transcrição CHOP/metabolismo , Transfecção
19.
Mol Cell Endocrinol ; 305(1-2): 47-55, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19133313

RESUMO

Fatty acids can favour the development of Type 2 diabetes by reducing insulin secretion and inducing apoptosis of pancreatic beta-cells. Here, we show that sustained exposure of the beta-cell line MIN6 or of isolated pancreatic islets to the most abundant circulating fatty acid palmitate increases the level of C/EBPbeta, an insulin transcriptional repressor. In contrast, two unsaturated fatty acids, oleate and linoleate were without effect. The induction of C/EBPbeta elicited by palmitate was prevented by inhibiting the ERK1/2 MAP kinase pathway or by reducing mitochondrial fatty acid oxidation with an inhibitor of Carnitine Palmitoyl Transferase-1. Overexpression of C/EBPbeta mimicked the detrimental effects of palmitate and resulted in a drastic reduction in insulin promoter activity, impairment in the capacity to respond to secretory stimuli and an increase in apoptosis. Our data suggest a potential involvement of C/EBPbeta as mediator of the deleterious effects of unsaturated free fatty acids on beta-cell function.


Assuntos
Apoptose/efeitos dos fármacos , Proteína beta Intensificadora de Ligação a CCAAT/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Palmitatos/farmacologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Carnitina O-Palmitoiltransferase/farmacologia , Linhagem Celular , Insulina/biossíntese , Células Secretoras de Insulina/citologia , Ácido Linoleico/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ácido Oleico/farmacologia , Oxirredução
20.
J Biol Chem ; 281(37): 26932-42, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16831872

RESUMO

Insulin release from pancreatic beta-cells plays an essential role in blood glucose homeostasis. Several proteins controlling insulin exocytosis have been identified, but the factors determining the expression of the components of the secretory machinery of beta-cells remain largely unknown. MicroRNAs are newly discovered small non-coding RNAs acting as repressors of gene expression. We found that overexpression of mir-9 in insulin-secreting cells causes a reduction in exocytosis elicited by glucose or potassium. We show that mir-9 acts by diminishing the expression of the transcription factor Onecut-2 and, in turn, by increasing the level of Granuphilin/Slp4, a Rab GTPase effector associated with beta-cell secretory granules that exerts a negative control on insulin release. Indeed, electrophoretic mobility shift assays, chromatin immunoprecipitation, and transfection experiments demonstrated that Onecut-2 is able to bind to the granuphilin promoter and to repress its transcriptional activity. Moreover, we show that silencing of Onecut-2 by RNA interference increases Granuphilin expression and mimics the effect of mir-9 on stimulus-induced exocytosis. Our data provide evidence that in insulin-producing cells adequate levels of mir-9 are mandatory for maintaining appropriate Granuphilin levels and optimal secretory capacity.


Assuntos
Regulação da Expressão Gênica , Insulina/metabolismo , MicroRNAs , Proteínas de Transporte Vesicular/biossíntese , Sequência de Bases , Exocitose , Inativação Gênica , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Dados de Sequência Molecular , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA