Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 82(2): 023302, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21361586

RESUMO

We present a stand-alone system to characterize the high-energy particles emitted in the interaction of ultrahigh intensity laser pulses with matter. According to the laser and target characteristics, electrons or protons are produced with energies higher than a few mega electron volts. Selected material samples can, therefore, be activated via nuclear reactions. A multidetector, named NATALIE, has been developed to count the ß(+) activity of these irradiated samples. The coincidence technique used, designed in an integrated system, results in very low background in the data, which is required for low activity measurements. It, therefore, allows a good precision on the nuclear activation yields of the produced radionuclides. The system allows high counting rates and online correction of the dead time. It also provides, online, a quick control of the experiment. Geant4 simulations are used at different steps of the data analysis to deduce, from the measured activities, the energy and angular distributions of the laser-induced particle beams. Two applications are presented to illustrate the characterization of electrons and protons.

2.
Phys Rev Lett ; 105(1): 015005, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20867457

RESUMO

We have analyzed the coupling of ultraintense lasers (at ∼2×10{19} W/cm{2}) with solid foils of limited transverse extent (∼10 s of µm) by monitoring the electrons and ions emitted from the target. We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time. Consequently, when transverse refluxing takes places within the acceleration time of associated ions, we observe increased maximum proton energies (up to threefold), increased laser-to-ion conversion efficiency (up to a factor 30), and reduced divergence which bodes well for a number of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA