Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Pathog Immun ; 10(1): 1-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39391808

RESUMO

Background: First-generation anti-SARS-CoV-2 monoclonal antibodies (mAbs) used for prophylaxis or therapeutic purposes in immunocompromised patients have been withdrawn because of the emergence of resistant Omicron variants. In 2024, 2 novel mAbs, VYD222/Pemivibart and AZD3152/Sipavibart, were approved by health authorities, but their activity against contemporary JN.1 sublineages is poorly characterized. Methods: We isolated authentic JN.1.1, KP.1.1, LB.1, and KP.3.3 viruses and evaluated their sensitivity to neutralization by these mAbs in 2 target cell lines. Results: Compared to ancestral strains, VYD222/Pemivibart remained moderately active against JN.1 subvariants, with a strong increase of 50% Inhibitory Concentration (IC50), reaching up to 3 to 15 µg/mL for KP3.3. AZD3152/Sipavibart neutralized JN.1.1 but lost antiviral efficacy against KP.1.1, LB.1, and KP3.3. Conclusions: Our results highlight the need for a close clinical monitoring of VYD222/Pemivibart and raise concerns about the clinical efficacy of AZD3152/Sipavibart.

2.
iScience ; 27(9): 110670, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39252967

RESUMO

The mechanistic target of rapamycin (mTOR) positively regulates multiple steps of the HIV-1 replication cycle. We previously reported that a 12-week supplementation of antiretroviral therapy (ART) with metformin, an indirect mTOR inhibitor used in type-2 diabetes treatment, reduced mTOR activation and HIV transcription in colon-infiltrating CD4+ T cells, together with systemic inflammation in nondiabetic people with HIV-1 (PWH). Herein, we investigated the antiviral mechanisms of metformin. In a viral outgrowth assay performed with CD4+ T cells from ART-treated PWH, and upon infection in vitro with replication-competent and VSV-G-pseudotyped HIV-1, metformin decreased virion release, but increased the frequency of productively infected CD4lowHIV-p24+ T cells. These observations coincided with increased BST2/tetherin (HIV release inhibitor) and Bcl-2 (pro-survival factor) expression, and improved recognition of productively infected T cells by HIV-1 envelope antibodies. Thus, metformin exerts pleiotropic effects on post-integration steps of the HIV-1 replication cycle and may be used to accelerate viral reservoir decay in ART-treated PWH.

3.
J Exp Med ; 221(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39240335

RESUMO

Predicting the immunogenicity of candidate vaccines in humans remains a challenge. To address this issue, we developed a lymphoid organ-chip (LO chip) model based on a microfluidic chip seeded with human PBMC at high density within a 3D collagen matrix. Perfusion of the SARS-CoV-2 spike protein mimicked a vaccine boost by inducing a massive amplification of spike-specific memory B cells, plasmablast differentiation, and spike-specific antibody secretion. Features of lymphoid tissue, including the formation of activated CD4+ T cell/B cell clusters and the emigration of matured plasmablasts, were recapitulated in the LO chip. Importantly, myeloid cells were competent at capturing and expressing mRNA vectored by lipid nanoparticles, enabling the assessment of responses to mRNA vaccines. Comparison of on-chip responses to Wuhan monovalent and Wuhan/Omicron bivalent mRNA vaccine boosts showed equivalent induction of Omicron neutralizing antibodies, pointing at immune imprinting as reported in vivo. The LO chip thus represents a versatile platform suited to the preclinical evaluation of vaccine-boosting strategies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Células B de Memória , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , Humanos , Vacinas contra COVID-19/imunologia , Vacinas de mRNA/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Células B de Memória/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Tecido Linfoide/imunologia , Dispositivos Lab-On-A-Chip , Vacinas Sintéticas/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Lipossomos , Nanopartículas
5.
iScience ; 27(7): 110354, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39071888

RESUMO

Antibodies play a pivotal role in protecting from SARS-CoV-2 infection, but their efficacy is challenged by the continuous emergence of viral variants. In this study, we describe two broadly neutralizing antibodies cloned from the memory B cells of a single convalescent individual after infection with ancestral SARS-CoV-2. Cv2.3194, a resilient class 1 anti-RBD antibody, remains active against Omicron sub-variants up to BA.2.86. Cv2.3132, a near pan-Sarbecovirus neutralizer, targets the heptad repeat 2 membrane proximal region. When combined, Cv2.3194 and Cv2.3132 form a complementary SARS-CoV-2 neutralizing antibody cocktail exhibiting a local dose-dependent synergy. Thus, remarkably robust neutralizing memory B cell antibodies elicited in response to ancestral SARS-CoV-2 infection can withstand viral evolution and immune escape. The cooperative effect of such antibody combination may confer a certain level of protection against the latest SARS-CoV-2 variants.

6.
Heliyon ; 10(5): e27033, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486776

RESUMO

Background: SARS-CoV-2 Omicron lineage contains variants with multiple sequence mutations relative to the ancestral strain particularly in the viral spike gene. These mutations are associated inter alia with loss of neutralization sensitivity to sera generated by immunization with vaccines targeting ancestral strains or prior infection with circulating (non-Omicron) variants. Here we present a comparison of vaccine formulation elicited cross neutralization responses using two different assay readouts from a subpopulation of a Phase II/III clinical trial. Methods: Human sera from a Phase II/III trial (NCT04762680) was collected and evaluated for neutralizing responses to SARS-CoV-2 spike antigen protein vaccines formulated with AS03 adjuvant, following a primary series of two-doses of ancestral strain vaccine in individuals who were previously unvaccinated or as an ancestral or variant strain booster vaccine among individuals previously vaccinated with the mRNA BNT162b2 vaccine. Results: We report that a neutralizing response to Omicron BA.1 is induced by the two-dose primary series in 89% of SARS-CoV-2-seronegative individuals. A booster dose of each vaccine formulation raises neutralizing antibody titers that effectively neutralizes Omicron BA.1 and BA.4/5 variants. Responses are highest after the monovalent Beta variant booster and similar in magnitude to human convalescent plasma titers. Conclusion: The findings of this study suggest the possibility to generate greater breadth of cross-neutralization to more recently emerging viral variants through use of a diverged spike vaccine in the form of a Beta variant booster vaccine.

7.
bioRxiv ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464135

RESUMO

The mechanistic target of rapamycin (mTOR) positively regulates multiple steps of the HIV-1 replication cycle. We previously reported that a 12-weeks supplementation of antiretroviral therapy (ART) with metformin, an indirect mTOR inhibitor used in type-2 diabetes treatment, reduced mTOR activation and HIV transcription in colon-infiltrating CD4+ T-cells, together with systemic inflammation in nondiabetic people with HIV-1 (PWH). Herein, we investigated the antiviral mechanisms of metformin. In a viral outgrowth assay performed with CD4+ T-cells from ART-treated PWH, and upon infection in vitro with replication-competent and VSV-G-pseudotyped HIV-1, metformin decreased virion release, but increased the frequency of productively infected CD4lowHIV-p24+ T-cells. These observations coincided with increased BST2/Tetherin (HIV release inhibitor) and Bcl-2 (pro-survival factor) expression, and improved recognition of productively infected T-cells by HIV-1 Envelope antibodies. Thus, metformin exerts pleiotropic effects on post-transcription/translation steps of the HIV-1 replication cycle and may be used to accelerate viral reservoir decay in ART-treated PWH.

8.
Nat Commun ; 15(1): 2254, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480689

RESUMO

The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolate and characterize XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicate in IGROV-1 but no longer in Vero E6 and are not markedly fusogenic. They potently infect nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remain active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals are markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhances NAb responses against both XBB and BA.2.86 variants. JN.1 displays lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Neutralizantes , Células Epiteliais , Exercício Físico
9.
J Virol ; 98(1): e0135123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38088562

RESUMO

SARS-CoV-2 variants with undetermined properties have emerged intermittently throughout the COVID-19 pandemic. Some variants possess unique phenotypes and mutations which allow further characterization of viral evolution and Spike functions. Around 1,100 cases of the B.1.640.1 variant were reported in Africa and Europe between 2021 and 2022, before the expansion of Omicron. Here, we analyzed the biological properties of a B.1.640.1 isolate and its Spike. Compared to the ancestral Spike, B.1.640.1 carried 14 amino acid substitutions and deletions. B.1.640.1 escaped binding by some anti-N-terminal domain and anti-receptor-binding domain monoclonal antibodies, and neutralization by sera from convalescent and vaccinated individuals. In cell lines, infection generated large syncytia and a high cytopathic effect. In primary airway cells, B.1.640.1 replicated less than Omicron BA.1 and triggered more syncytia and cell death than other variants. The B.1.640.1 Spike was highly fusogenic when expressed alone. This was mediated by two poorly characterized and infrequent mutations located in the Spike S2 domain, T859N and D936H. Altogether, our results highlight the cytopathy of a hyper-fusogenic SARS-CoV-2 variant, supplanted upon the emergence of Omicron BA.1. (This study has been registered at ClinicalTrials.gov under registration no. NCT04750720.)IMPORTANCEOur results highlight the plasticity of SARS-CoV-2 Spike to generate highly fusogenic and cytopathic strains with the causative mutations being uncharacterized in previous variants. We describe mechanisms regulating the formation of syncytia and the subsequent consequences in a primary culture model, which are poorly understood.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , África , COVID-19/virologia , Pandemias , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Células Gigantes/virologia
10.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38045308

RESUMO

The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolated and characterized XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicated in IGROV-1 but no longer in Vero E6 and were not markedly fusogenic. They potently infected nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remained active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals were markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhanced NAb responses against both XBB and BA.2.86 variants. JN.1 displayed lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.

11.
Clin Pharmacol Ther ; 115(1): 86-94, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37795693

RESUMO

Although anti-severe acute respiratory syndrome-coronavirus 2 antibody kinetics have been described in large populations of vaccinated individuals, we still poorly understand how they evolve during a natural infection and how this impacts viral clearance. For that purpose, we analyzed the kinetics of both viral load and neutralizing antibody levels in a prospective cohort of individuals during acute infection with alpha variant. Using a mathematical model, we show that the progressive increase in neutralizing antibodies leads to a shortening of the half-life of both infected cells and infectious viral particles. We estimated that the neutralizing activity reached 90% of its maximal level within 11 days after symptom onset and could reduce the half-life of both infected cells and circulating virus by a 6-fold factor, thus playing a key role to achieve rapid viral clearance. Using this model, we conducted a simulation study to predict in a more general context the protection conferred by pre-existing neutralization titers, due to either vaccination or prior infection. We predicted that a neutralizing activity, as measured by 50% effective dose > 103 , could reduce by 46% the risk of having viral load detectable by standard polymerase chain reaction assays and by 98% the risk of having viral load above the threshold of infectiousness. Our model shows that neutralizing activity could be used to define correlates of protection against infection and transmission.


Assuntos
COVID-19 , Humanos , Anticorpos Neutralizantes , Estudos Prospectivos , SARS-CoV-2
13.
Med ; 4(10): 664-667, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37837962

RESUMO

Antibodies effective against the recent Omicron sublineages are missing. By taking advantage of a multi-centric prospective cohort of immunocompromised individuals treated for mild-to-moderate COVID-19, Bruel et al. show that administration of 500 mg of sotrovimab induces serum neutralization and antibody-dependent cellular cytotoxicity of BQ.1.1 and XBB.1.5. Therefore, sotrovimab may remain a therapeutic option against these variants.


Assuntos
Anticorpos Monoclonais Humanizados , Hospedeiro Imunocomprometido , Humanos , Estudos Prospectivos , Anticorpos Monoclonais Humanizados/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico
14.
Front Immunol ; 14: 1221961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559726

RESUMO

Background: The role of adaptive immune responses in long COVID remains poorly understood, with contrasting hypotheses suggesting either an insufficient antiviral response or an excessive immune response associated with inflammatory damage. To address this issue, we set to characterize humoral and CD4+ T cell responses in long COVID patients prior to SARS-CoV-2 vaccination. Methods: Long COVID patients who were seropositive (LC+, n=28) or seronegative (LC-, n=23) by spike ELISA assay were recruited based on (i) an initial SARS-CoV-2 infection documented by PCR or the conjunction of three major signs of COVID-19 and (ii) the persistence or resurgence of at least 3 symptoms for over 3 months. They were compared to COVID patients with resolved symptoms (RE, n=29) and uninfected control individuals (HD, n=29). Results: The spectrum of persistent symptoms proved similar in both long COVID groups, with a trend for a higher number of symptoms in the seronegative group (median=6 vs 4.5; P=0.01). The use a highly sensitive S-flow assay enabled the detection of low levels of SARS-CoV-2 spike-specific IgG in 22.7% of ELISA-seronegative long COVID (LC-) patients. In contrast, spike-specific IgG levels were uniformly high in the LC+ and RE groups. Multiplexed antibody analyses to 30 different viral antigens showed that LC- patients had defective antibody responses to all SARS-CoV-2 proteins tested but had in most cases preserved responses to other viruses. A sensitive primary T cell line assay revealed low but detectable SARS-CoV-2-specific CD4 responses in 39.1% of LC- patients, while response frequencies were high in the LC+ and RE groups. Correlation analyses showed overall strong associations between humoral and cellular responses, with exceptions in the LC- group. Conclusions: These findings provide evidence for two major types of antiviral immune responses in long COVID. Seropositive patients showed coordinated cellular and humoral responses at least as high as those of recovered patients. In contrast, ELISA-seronegative long COVID patients showed overall low antiviral responses, with detectable specific CD4+ T cells and/or antibodies in close to half of patients (52.2%). These divergent findings in patients sharing a comparable spectrum of persistent symptoms raise the possibility of multiple etiologies in long COVID.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Antivirais , Imunoglobulina G
15.
PLoS Comput Biol ; 19(8): e1011282, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549192

RESUMO

Because SARS-CoV-2 constantly mutates to escape from the immune response, there is a reduction of neutralizing capacity of antibodies initially targeting the historical strain against emerging Variants of Concern (VoC)s. That is why the measure of the protection conferred by vaccination cannot solely rely on the antibody levels, but also requires to measure their neutralization capacity. Here we used a mathematical model to follow the humoral response in 26 individuals that received up to three vaccination doses of Bnt162b2 vaccine, and for whom both anti-S IgG and neutralization capacity was measured longitudinally against all main VoCs. Our model could identify two independent mechanisms that led to a marked increase in measured humoral response over the successive vaccination doses. In addition to the already known increase in IgG levels after each dose, we identified that the neutralization capacity was significantly increased after the third vaccine administration against all VoCs, despite large inter-individual variability. Consequently, the model projects that the mean duration of detectable neutralizing capacity against non-Omicron VoC is between 348 days (Beta variant, 95% Prediction Intervals PI [307; 389]) and 587 days (Alpha variant, 95% PI [537; 636]). Despite the low neutralization levels after three doses, the mean duration of detectable neutralizing capacity against Omicron variants varies between 173 days (BA.5 variant, 95% PI [142; 200]) and 256 days (BA.1 variant, 95% PI [227; 286]). Our model shows the benefit of incorporating the neutralization capacity in the follow-up of patients to better inform on their level of protection against the different SARS-CoV-2 variants. Trial registration: This clinical trial is registered with ClinicalTrials.gov, Trial IDs NCT04750720 and NCT05315583.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Imunoglobulina G , SARS-CoV-2/genética , Vacinação
16.
medRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398037

RESUMO

Background: Monoclonal antibodies (mAbs) targeting the spike of SARS-CoV-2 prevent severe COVID-19. Omicron subvariants BQ.1.1 and XBB.1.5 evade neutralization of therapeutic mAbs, leading to recommendations against their use. Yet, the antiviral activities of mAbs in treated patients remain ill-defined. Methods: We investigated neutralization and antibody-dependent cellular cytotoxicity (ADCC) of D614G, BQ.1.1 and XBB.1.5 in 320 sera from 80 immunocompromised patients with mild-to-moderate COVID-19 prospectively treated with mAbs (sotrovimab, n=29; imdevimab/casirivimab, n=34; cilgavimab/tixagevimab, n=4) or anti-protease (nirmatrelvir/ritonavir, n=13). We measured live-virus neutralization titers and quantified ADCC with a reporter assay. Findings: Only Sotrovimab elicits serum neutralization and ADCC against BQ.1.1 and XBB.1.5. As compared to D614G, sotrovimab neutralization titers of BQ.1.1 and XBB.1.5 are reduced (71- and 58-fold, respectively), but ADCC levels are only slightly decreased (1.4- and 1-fold, for BQ.1.1 and XBB.1.5, respectively). Interpretation: Our results show that sotrovimab is active against BQ.1.1 and XBB.1.5 in treated individuals, suggesting that it may be a valuable therapeutic option.

17.
Euro Surveill ; 28(25)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37347417

RESUMO

BackgroundThe risk of SARS-CoV-2 (re-)infection remains present given waning of vaccine-induced and infection-acquired immunity, and ongoing circulation of new variants.AimTo develop a method that predicts virus neutralisation and disease protection based on variant-specific antibody measurements to SARS-CoV-2 antigens.MethodsTo correlate antibody and neutralisation titres, we collected 304 serum samples from individuals with either vaccine-induced or infection-acquired SARS-CoV-2 immunity. Using the association between antibody and neutralisation titres, we developed a prediction model for SARS-CoV-2-specific neutralisation titres. From predicted neutralising titres, we inferred protection estimates to symptomatic and severe COVID-19 using previously described relationships between neutralisation titres and protection estimates. We estimated population immunity in a French longitudinal cohort of 905 individuals followed from April 2020 to November 2021.ResultsWe demonstrated a strong correlation between anti-SARS-CoV-2 antibodies measured using a low cost high-throughput assay and antibody response capacity to neutralise live virus. Participants with a single vaccination or immunity caused by infection were especially vulnerable to symptomatic or severe COVID-19. While the median reduced risk of COVID-19 from Delta variant infection in participants with three vaccinations was 96% (IQR: 94-98), median reduced risk among participants with infection-acquired immunity was only 42% (IQR: 22-66).ConclusionOur results are consistent with data from vaccine effectiveness studies, indicating the robustness of our approach. Our multiplex serological assay can be readily adapted to study new variants and provides a framework for development of an assay that would include protection estimates.


Assuntos
COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/epidemiologia , França/epidemiologia , Reinfecção , SARS-CoV-2
18.
Cell Host Microbe ; 31(6): 937-948.e4, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37196656

RESUMO

Mpox virus (MPXV) caused a multi-country outbreak in non-endemic areas in 2022. Following historic success of smallpox vaccination with vaccinia virus (VACV)-based vaccines, the third generation modified vaccinia Ankara (MVA)-based vaccine was used as prophylaxis for MPXV, but its effectiveness remains poorly characterized. Here, we applied two assays to quantify neutralizing antibodies (NAbs) in sera from control, MPXV-infected, or MVA-vaccinated individuals. Various levels of MVA NAbs were detected after infection, historic smallpox, or recent MVA vaccination. MPXV was minimally sensitive to neutralization. However, addition of complement enhanced detection of responsive individuals and NAb levels. Anti-MVA and -MPXV NAbs were observed in 94% and 82% of infected individuals, respectively, and 92% and 56% of MVA vaccinees, respectively. NAb titers were higher in individuals born before 1980, highlighting the impact of historic smallpox vaccination on humoral immunity. Altogether, our results indicate that MPXV neutralization is complement dependent and uncover mechanisms underlying vaccine effectiveness.


Assuntos
Mpox , Vacina Antivariólica , Varíola , Humanos , Varíola/prevenção & controle , Anticorpos Antivirais , Vaccinia virus , Anticorpos Neutralizantes , Proteínas do Sistema Complemento
19.
Nat Commun ; 14(1): 824, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788246

RESUMO

Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increases these titers, which remains about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increases more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitates their spread in immunized populations and raises concerns about the efficacy of most available mAbs.


Assuntos
Anticorpos Neutralizantes , Vacina BNT162 , COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Antivirais , Antivirais , Infecções Irruptivas , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
20.
Cell Rep Med ; 3(12): 100850, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36450283

RESUMO

The emergence of Omicron sublineages impacts the therapeutic efficacy of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs). Here, we evaluate neutralization and antibody-dependent cellular cytotoxicity (ADCC) activities of 6 therapeutic mAbs against Delta, BA.2, BA.4, and BA.5. The Omicron subvariants escape most antibodies but remain sensitive to bebtelovimab and cilgavimab. Consistent with their shared spike sequence, BA.4 and BA.5 display identical neutralization profiles. Sotrovimab is the most efficient at eliciting ADCC. We also analyze 121 sera from 40 immunocompromised individuals up to 6 months after infusion of Ronapreve (imdevimab + casirivimab) or Evusheld (cilgavimab + tixagevimab). Sera from Ronapreve-treated individuals do not neutralize Omicron subvariants. Evusheld-treated individuals neutralize BA.2 and BA.5, but titers are reduced. A longitudinal evaluation of sera from Evusheld-treated patients reveals a slow decay of mAb levels and neutralization, which is faster against BA.5. Our data shed light on antiviral activities of therapeutic mAbs and the duration of effectiveness of Evusheld pre-exposure prophylaxis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos , Antivirais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA