Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Am Soc Nephrol ; 33(8): 1528-1545, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35777784

RESUMO

BACKGROUND: Volume-regulated anion channels (VRACs) are heterohexamers of LRRC8A with LRRC8B, -C, -D, or -E in various combinations. Depending on the subunit composition, these swelling-activated channels conduct chloride, amino acids, organic osmolytes, and drugs. Despite VRACs' role in cell volume regulation, and large osmolarity changes in the kidney, neither the localization nor the function of VRACs in the kidney is known. METHODS: Mice expressing epitope-tagged LRRC8 subunits were used to determine the renal localization of all VRAC subunits. Mice carrying constitutive deletions of Lrrc8b-e, or with inducible or cell-specific ablation of Lrrc8a, were analyzed to assess renal functions of VRACs. Analysis included histology, urine and serum parameters in different diuresis states, and metabolomics. RESULTS: The kidney expresses all five VRAC subunits with strikingly distinct localization. Whereas LRRC8C is exclusively found in vascular endothelium, all other subunits are found in the nephron. LRRC8E is specific for intercalated cells, whereas LRRC8A, LRRC8B, and LRRC8D are prominent in basolateral membranes of proximal tubules. Conditional deletion of LRRC8A in proximal but not distal tubules and constitutive deletion of LRRC8D cause proximal tubular injury, increased diuresis, and mild Fanconi-like symptoms. CONCLUSIONS: VRAC/LRRC8 channels are crucial for the function and integrity of proximal tubules, but not for more distal nephron segments despite their larger need for volume regulation. LRRC8A/D channels may be required for the basolateral exit of many organic compounds, including cellular metabolites, in proximal tubules. Proximal tubular injury likely results from combined accumulation of several transported molecules in the absence of VRAC channels.


Assuntos
Cloretos , Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/metabolismo , Transporte Biológico , Cloretos/metabolismo , Membrana Celular/metabolismo , Néfrons/metabolismo
2.
Immunity ; 52(5): 767-781.e6, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32277911

RESUMO

The enzyme cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA in infected and malignant cells and catalyzes the formation of 2'3'cGMP-AMP (cGAMP), which in turn triggers interferon (IFN) production via the STING pathway. Here, we examined the contribution of anion channels to cGAMP transfer and anti-viral defense. A candidate screen revealed that inhibition of volume-regulated anion channels (VRACs) increased propagation of the DNA virus HSV-1 but not the RNA virus VSV. Chemical blockade or genetic ablation of LRRC8A/SWELL1, a VRAC subunit, resulted in defective IFN responses to HSV-1. Biochemical and electrophysiological analyses revealed that LRRC8A/LRRC8E-containing VRACs transport cGAMP and cyclic dinucleotides across the plasma membrane. Enhancing VRAC activity by hypotonic cell swelling, cisplatin, GTPγS, or the cytokines TNF or interleukin-1 increased STING-dependent IFN response to extracellular but not intracellular cGAMP. Lrrc8e-/- mice exhibited impaired IFN responses and compromised immunity to HSV-1. Our findings suggest that cell-to-cell transmission of cGAMP via LRRC8/VRAC channels is central to effective anti-viral immunity.


Assuntos
Fibroblastos/imunologia , Interferons/imunologia , Proteínas de Membrana/imunologia , Nucleotídeos Cíclicos/imunologia , Canais de Ânion Dependentes de Voltagem/imunologia , Animais , Antivirais/imunologia , Antivirais/metabolismo , Efeito Espectador , Linhagem Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia , Humanos , Interferons/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Nucleotidiltransferases/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
3.
EMBO J ; 39(9): e103358, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32118314

RESUMO

CLC chloride/proton exchangers may support acidification of endolysosomes and raise their luminal Cl- concentration. Disruption of endosomal ClC-3 causes severe neurodegeneration. To assess the importance of ClC-3 Cl- /H+ exchange, we now generate Clcn3unc/unc mice in which ClC-3 is converted into a Cl- channel. Unlike Clcn3-/- mice, Clcn3unc/unc mice appear normal owing to compensation by ClC-4 with which ClC-3 forms heteromers. ClC-4 protein levels are strongly reduced in Clcn3-/- , but not in Clcn3unc/unc mice because ClC-3unc binds and stabilizes ClC-4 like wild-type ClC-3. Although mice lacking ClC-4 appear healthy, its absence in Clcn3unc/unc /Clcn4-/- mice entails even stronger neurodegeneration than observed in Clcn3-/- mice. A fraction of ClC-3 is found on synaptic vesicles, but miniature postsynaptic currents and synaptic vesicle acidification are not affected in Clcn3unc/unc or Clcn3-/- mice before neurodegeneration sets in. Both, Cl- /H+ -exchange activity and the stabilizing effect on ClC-4, are central to the biological function of ClC-3.


Assuntos
Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Endossomos/metabolismo , Doenças Neurodegenerativas/genética , Animais , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Camundongos , Mutação , Doenças Neurodegenerativas/metabolismo , Vesículas Sinápticas/metabolismo
4.
Nat Commun ; 9(1): 1974, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773801

RESUMO

Glucose homeostasis depends critically on insulin that is secreted by pancreatic ß-cells. Serum glucose, which is directly sensed by ß-cells, stimulates depolarization- and Ca2+-dependent exocytosis of insulin granules. Here we show that pancreatic islets prominently express LRRC8A and LRRC8D, subunits of volume-regulated VRAC anion channels. Hypotonicity- or glucose-induced ß-cell swelling elicits canonical LRRC8A-dependent VRAC currents that depolarize ß-cells to an extent that causes electrical excitation. Glucose-induced excitation and Ca2+ responses are delayed in onset, but not abolished, in ß-cells lacking the essential VRAC subunit LRRC8A. Whereas Lrrc8a disruption does not affect tolbutamide- or high-K+-induced insulin secretion from pancreatic islets, it reduces first-phase glucose-induced insulin secretion. Mice lacking VRAC in ß-cells have normal resting serum glucose levels but impaired glucose tolerance. We propose that opening of LRRC8/VRAC channels increases glucose sensitivity and insulin secretion of ß-cells synergistically with KATP closure. Neurotransmitter-permeable LRRC8D-containing VRACs might have additional roles in autocrine/paracrine signaling within islets.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Ânions/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/genética , Feminino , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Cultura Primária de Células , Multimerização Proteica , Tolbutamida/farmacologia
5.
Biochim Biophys Acta ; 1863(1): 115-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26516054

RESUMO

The expression and function of TRPV1 are influenced by its interaction with cellular proteins. Here, we identify Whirlin, a cytoskeletal PDZ-scaffold protein implicated in hearing, vision and mechanosensory transduction, as an interacting partner of TRPV1. Whirlin associates with TRPV1 in cell lines and in primary cultures of rat nociceptors. Whirlin is expressed in 55% of mouse sensory C-fibers, including peptidergic and non-peptidergic nociceptors, and co-localizes with TRPV1 in 70% of them. Heterologous expression of Whirlin increased TRPV1 protein expression and trafficking to the plasma membrane, and promoted receptor clustering. Silencing Whirlin expression with siRNA or blocking protein translation resulted in a concomitant degradation of TRPV1 that could be prevented by inhibiting the proteasome. The degradation kinetics of TRPV1 upon arresting protein translation mirrored that of Whirlin in cells co-expressing both proteins, suggesting a parallel degradation mechanism. Noteworthy, Whirlin expression significantly reduced TRPV1 degradation induced by prolonged exposure to capsaicin. Thus, our findings indicate that Whirlin and TRPV1 are associated in a subset of nociceptors and that TRPV1 protein stability is increased through the interaction with the cytoskeletal scaffold protein. Our results suggest that the Whirlin­TRPV1 complex may represent a novel molecular target and its pharmacological disruption might be a therapeutic strategy for the treatment of peripheral TRPV1-mediated disorders.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Nociceptores/metabolismo , Canais de Cátion TRPV/biossíntese , Animais , Células Cultivadas , Proteínas de Membrana/genética , Camundongos , Complexos Multiproteicos/genética , Nociceptores/citologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , RNA Interferente Pequeno , Ratos , Ratos Wistar , Canais de Cátion TRPV/genética
6.
Pflugers Arch ; 468(3): 385-93, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26635246

RESUMO

A major player of vertebrate cell volume regulation is the volume-regulated anion channel (VRAC), which conducts halide ions and organic osmolytes to counteract osmotic imbalances. The molecular entity of this channel was unknown until very recently, although its biophysical characteristics and diverse physiological roles have been extensively studied over the last 30 years. On the road to the molecular identification of VRAC, experimental difficulties led to the proposal of a variety of false candidates. In 2014, in a final breakthrough, two groups independently identified LRRC8A as indispensable component of VRAC. LRRC8A is part of the leucine-rich repeat containing 8 family, which is comprised of five members (LRRC8A-E). Of those, LRRC8A is an obligatory subunit of VRAC but it needs at least one of the other family members to mediate the swelling-induced Cl(-) current ICl,vol. This review discusses the remarkable journey which led to the molecular identification of VRAC, evidence for LRRC8 proteins forming the VRAC pore and their heteromeric assembly. Furthermore, first major insights on the role of LRRC8 proteins in cancer drug resistance and apoptosis and the role of LRRC8D in cisplatin and taurine transport will be summarized.


Assuntos
Tamanho Celular , Cloretos/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Apoptose , Humanos , Canais Iônicos/química , Transporte de Íons , Proteínas de Membrana/química , Multimerização Proteica
7.
EMBO J ; 34(24): 2993-3008, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26530471

RESUMO

Although platinum-based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume-regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8-dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug-induced apoptosis independently from drug uptake, possibly by impairing VRAC-dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D-containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.


Assuntos
Antineoplásicos/farmacologia , Carboplatina/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Membrana/metabolismo , Apoptose , Tamanho Celular , Células HCT116 , Células HEK293 , Humanos , Proteínas de Membrana/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
8.
J Biol Chem ; 288(14): 9675-9685, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23408423

RESUMO

Persistent pruritus is a common disabling dermatologic symptom associated with different etiologic factors. These include primary skin conditions, as well as neuropathic, psychogenic, or systemic disorders like chronic liver disease. Defective clearance of potential pruritogenic substances that activate itch-specific neurons innervating the skin is thought to contribute to cholestatic pruritus. However, because the underlying disease-specific pruritogens and itch-specific neuronal pathways and mechanism(s) are unknown, symptomatic therapeutic intervention often leads to no or only limited success. In the current study, we aimed to first validate rats with bile duct ligation (BDL) as a model for hepatic pruritus and then to evaluate the contribution of inflammation, peripheral neuronal sensitization, and specific signaling pathways and subpopulations of itch-responsive neurons to scratching behavior and thermal hypersensitivity. Chronic BDL rats displayed enhanced scratching behavior and thermal hyperalgesia indicative of peripheral neuroinflammation. BDL-induced itch and hypersensitivity involved a minor contribution of histaminergic/serotonergic receptors, but significant activation of protein-activated receptor 2 (PAR2) receptors, prostaglandin PGE2 formation, and potentiation of transient receptor potential vanilloid 1 (TRPV1) channel activity. The sensitization of dorsal root ganglion nociceptors in BDL rats was associated with increased surface expression of PAR2 and TRPV1 proteins and an increase in the number of PAR2- and TRPV1-expressing peptidergic neurons together with a shift of TRPV1 receptor expression to medium sized dorsal root ganglion neurons. These results suggest that pruritus and hyperalgesia in chronic cholestatic BDL rats are associated with neuroinflammation and involve PAR2-induced TRPV1 sensitization. Thus, pharmacological modulation of PAR2 and/or TRPV1 may be a valuable therapeutic approach for patients with chronic liver pruritus refractory to conventional treatments.


Assuntos
Hepatopatias/metabolismo , Prurido/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Ductos Biliares/cirurgia , Colestase/metabolismo , Doença Crônica , Temperatura Alta , Hiperalgesia/metabolismo , Masculino , Mastócitos/patologia , Microscopia de Fluorescência/métodos , Modelos Neurológicos , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Wistar , Receptor PAR-2/metabolismo , Transdução de Sinais
9.
Expert Opin Ther Pat ; 22(9): 999-1017, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22835143

RESUMO

INTRODUCTION: Thermosensory channels are a subfamily of the transient receptor potential (TRP) channel family that are activated by changes in the environmental temperature. These channels, known as thermoTRPs, cover the entire spectrum of temperatures, from noxious cold (< 15°C) to injurious heat (> 42°C). In addition, dysfunction of these channels contributes to the thermal hypersensitivity that accompanies painful conditions. Moreover, because of their wide tissue and cellular distribution, thermoTRPs are also involved in the pathophysiology of several diseases, from inflammation to cancer. AREAS COVERED: Although the number of thermoTRPs is increasing with the identification of novel members such as TRPM3, we will cover the recent advances in the pharmacology of the classical thermosensory channels, namely TRPV1, TRPV2, TRPV3, TRPV4, TRPM8 and TRPA1. This review will focus on the therapeutic progress carried out for all these channels and will highlight the tenet that TRPV1, TRPM8 and TRPA1 are the most exploited channels, and that the interest on TRPV3 and TRPV4 is growing with the first TRPV3 antagonist that moves into Phase-II clinical trials. In contrast, the pharmacology of TRPV2 is yet in its infancy. EXPERT OPINION: Despite the tremendous academic and industrial investment to develop therapeutic modulators of thermoTRPs, it apparently seems that we are still far from the first successful product, although hope is maintained high for all compounds currently in clinical trials. A major concern has been the appearance of side effects. A better knowledge of the thermosensory protein networks (signal-plexes), along with the application of system biology approaches may provide novel strategies to modulate thermoTRPs activity with improved therapeutic index. A case in point is TRPV1, where acting on interacting proteins is providing new therapeutic opportunities.


Assuntos
Dor/fisiopatologia , Canais de Cátion TRPV/metabolismo , Animais , Temperatura Baixa , Temperatura Alta , Humanos , Inflamação/fisiopatologia , Neoplasias/fisiopatologia , Patentes como Assunto
10.
J Biol Chem ; 287(23): 19462-71, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22493457

RESUMO

TRPV1 receptor agonists such as the vanilloid capsaicin and the potent analog resiniferatoxin are well known potent analgesics. Depending on the vanilloid, dose, and administration site, nociceptor refractoriness may last from minutes up to months, suggesting the contribution of different cellular mechanisms ranging from channel receptor desensitization to Ca(2+) cytotoxicity of TRPV1-expressing neurons. The molecular mechanisms underlying agonist-induced TRPV1 desensitization and/or tachyphylaxis are still incompletely understood. Here, we report that prolonged exposure of TRPV1 to agonists induces rapid receptor endocytosis and lysosomal degradation in both sensory neurons and recombinant systems. Agonist-induced receptor internalization followed a clathrin- and dynamin-independent endocytic route, triggered by TRPV1 channel activation and Ca(2+) influx through the receptor. This process appears strongly modulated by PKA-dependent phosphorylation. Taken together, these findings indicate that TRPV1 agonists induce long-term receptor down-regulation by modulating the expression level of the channel through a mechanism that promotes receptor endocytosis and degradation and lend support to the notion that cAMP signaling sensitizes nociceptors through several mechanisms.


Assuntos
Antipruriginosos/farmacologia , Cálcio/metabolismo , Capsaicina/farmacologia , Lisossomos/metabolismo , Proteínas do Tecido Nervoso/agonistas , Neurônios/metabolismo , Proteólise/efeitos dos fármacos , Canais de Cátion TRPV/agonistas , Clatrina/genética , Clatrina/metabolismo , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Lisossomos/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Nociceptores/metabolismo , Fosforilação , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sistemas do Segundo Mensageiro/fisiologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
11.
J Pharmacol Exp Ther ; 341(3): 634-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22393248

RESUMO

Small peptides patterned after the N terminus of the synaptosomal protein of 25 kDa, a member of the protein complex implicated in Ca(2+)-dependent neuronal exocytosis, inhibit in vitro the release of neuromodulators involved in pain signaling, suggesting an in vivo analgesic activity. Here, we report that compound DD04107 (palmitoyl-EEMQRR-NH(2)), a 6-mer palmitoylated peptide that blocks the inflammatory recruitment of ion channels to the plasma membrane of nociceptors and the release of calcitonin gene-related peptide from primary sensory neurons, displays potent and long-lasting in vivo antihyperalgesia and antiallodynia in chronic models of inflammatory and neuropathic pain, such as the complete Freund's adjuvant, osteosarcoma, chemotherapy, and diabetic neuropathic models. Subcutaneous administration of the peptide produced a dose-dependent antihyperalgesic and antiallodynic activity that lasted ≥24 h. The compound showed a systemic distribution, characterized by a bicompartmental pharmacokinetic profile. Safety pharmacology studies indicated that the peptide is largely devoid of side effects and substantiated that the in vivo activity is not caused by locomotor impairment. Therefore, DD04107 is a potent and long-lasting antinociceptive compound that displays a safe pharmacological profile. These findings support the notion that neuronal exocytosis of receptors and neuronal algogens pivotally contribute to chronic inflammatory and neuropathic pain and imply a central role of peptidergic nociceptor sensitization to the pathogenesis of pain.


Assuntos
Analgésicos/farmacologia , Modelos Animais de Doenças , Exocitose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Lipopeptídeos/farmacologia , Neuralgia/tratamento farmacológico , Neurônios/efeitos dos fármacos , Analgésicos/efeitos adversos , Analgésicos/farmacocinética , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Carragenina/toxicidade , Relação Dose-Resposta a Droga , Hiperalgesia/tratamento farmacológico , Injeções Subcutâneas , Lipopeptídeos/efeitos adversos , Lipopeptídeos/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C3H , Neoplasias Experimentais/patologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Fatores de Tempo
12.
J Inflamm Res ; 4: 67-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22096371

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) is a thermoreceptor that responds to noxious temperatures, as well as to chemical agonists, such as vanilloids and protons. In addition, its channel activity is notably potentiated by proinflammatory mediators released upon tissue damage. The TRPV1 contribution to sensory neuron sensitization by proalgesic agents has signaled this receptor as a prime target for analgesic and anti-inflammatory drug intervention. However, TRPV1 antagonists have notably failed in clinical and preclinical studies because of their unwanted side effects. Recent reports have unveiled previously unrecognized anti-inflammatory and protective functions of TRPV1 in several diseases. For instance, this channel has been suggested to play an anti-inflammatory role in sepsis. Therefore, the use of potent TRPV1 antagonists as a general strategy to treat inflammation must be cautiously considered, given the deleterious effects that may arise from inhibiting the population of channels that have a protective function. The use of TRPV1 antagonists may be limited to treating those pathologies where enhanced receptor activity contributes to the inflamed state. Alternatively, therapeutic paradigms, such as reduction of inflammatory-mediated increase of receptor expression in the cell surface, may be a better strategy to prevent abrogation of the TRPV1 subpopulation involved in anti-inflammatory and protective processes.

13.
J Med Chem ; 54(21): 7441-52, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21950613

RESUMO

The thermosensory transient receptor potential vanilloid 1 channel (TRPV1) is a polymodal receptor activated by physical and chemical stimuli. TRPV1 activity is drastically potentiated by proinflammatory agents released upon tissue damage. Given the pivotal role of TRPV1 in human pain, there is pressing need for improved TRPV1 antagonists, the development of which will require identification of new pharmacophore scaffolds. Uncompetitive antagonists acting as open-channel blockers might serve as activity-dependent blockers that preferentially modulate the activity of overactive channels, thus displaying fewer side effects than their competitive counterparts. Herein we report the design, synthesis, biological evaluation, and SAR analysis of a family of triazine-based compounds acting as TRPV1 uncompetitive antagonists. We identified the triazine 8aA as a potent, pure antagonist that inhibits TRPV1 channel activity with nanomolar efficacy and strong voltage dependency. It represents a new class of activity-dependent TRPV1 antagonists and may serve as the basis for lead optimization in the development of new analgesics.


Assuntos
Analgésicos/síntese química , Canais de Cátion TRPV/antagonistas & inibidores , Triazinas/síntese química , Analgésicos/química , Analgésicos/farmacologia , Animais , Sítios de Ligação , Desenho de Fármacos , Feminino , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Relação Estrutura-Atividade , Triazinas/química , Triazinas/farmacologia , Xenopus
14.
FASEB J ; 25(5): 1628-40, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21307333

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) channel is a thermosensory receptor implicated in diverse physiological and pathological processes. The TRP domain, a highly conserved region in the C terminus adjacent to the internal channel gate, is critical for subunit tetramerization and channel gating. Here, we show that cell-penetrating, membrane-anchored peptides patterned after this protein domain are moderate and selective TRPV1 antagonists both in vitro and in vivo, blocking receptor activity in intact rat primary sensory neurons and their peripheral axons with mean decline time of 30 min. The most potent lipopeptide, TRP-p5, blocked all modes of TRPV1 gating with micromolar efficacy (IC(50)<10 µM), without significantly affecting other thermoTRP channels. In contrast, its retrosequence or the corresponding sequences of other TRPV channels did not alter TRPV1 channel activity (IC(50)>100 µM). TRP-p5 did not affect the capsaicin sensitivity of the vanilloid receptor. Our data suggest that TRP-p5 interferes with protein-protein interactions at the level of the TRP domain that are essential for the "conformational" change that leads to gate opening. Therefore, these palmitoylated peptides, which we termed TRPducins, are noncompetitive, voltage-independent, sequence-specific TRPV1 blockers. Our findings indicate that TRPducin-like peptides may embody a novel molecular strategy that can be exploited to generate a selective pharmacological arsenal for the TRP superfamily of ion channels.


Assuntos
Peptídeos/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Animais , Animais Recém-Nascidos , Capsaicina/farmacologia , Linhagem Celular , Células Cultivadas , Eletrofisiologia , Células HEK293 , Humanos , Imuno-Histoquímica , Peptídeos/química , Ratos , Canais de Cátion TRPV/química
15.
Adv Exp Med Biol ; 704: 491-515, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21290313

RESUMO

The capsaicin receptor TRPV1 (Transient Receptor Potential, Vanilloid family member 1), the founding member of the heat-sensitive TRP ("thermo-TRP") channel family, plays a pivotal role in pain transduction. There is mounting evidence that TRPV1 regulation is complex and is manifest at many levels, from gene expression through post-translational modification and formation of receptor heteromers to subcellular compartmentalization and association with regulatory proteins. These mechanisms are believed to be involved both in disease-related changes in TRPV1 expression, and the long-lasting refractory state, referred to as "desensitization", that follows TRPV1 agonist treatment. The signaling cascades that regulate TRPV1 and related thermo-TRP channels are only beginning to be understood. Here we review our current knowledge in this rapidly changing field. We propose that the complex regulation of TRPV1 may be exploited for therapeutic purposes, with the ultimate goal being the development of novel, innovative agents that target TRPV1 in diseased, but not healthy, tissues. Such compounds are expected to be devoid of the side-effects (e.g. hyperthermia and impaired noxious heat sensation) that plague the clinical use of existing TRPV1 antagonists.


Assuntos
Dor/fisiopatologia , Canais de Cátion TRPV/fisiologia , Animais , Humanos , Transdução de Sinais
16.
Biochim Biophys Acta ; 1792(3): 173-89, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19708126

RESUMO

Channelopathies, defined as diseases that are caused by mutations in genes encoding ion channels, are associated with a wide variety of symptoms. Impaired chloride transport can cause diseases as diverse as cystic fibrosis, myotonia, epilepsy, hyperekplexia, lysosomal storage disease, deafness, renal salt loss, kidney stones and osteopetrosis. These disorders are caused by mutations in genes belonging to non-related gene families, i.e. CLC chloride channels and transporters, ABC transporters, and GABA- and glycine receptors. Diseases due to mutations in TMEM16E and bestrophin 1 might be due to a loss of Ca++-activated Cl- channels, although this remains to be shown.


Assuntos
Canalopatias/fisiopatologia , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Animais , Bestrofinas , Canais de Cloreto/genética , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Epilepsia/fisiopatologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Miotonia/fisiopatologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo
17.
Stem Cells ; 27(3): 733-43, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19259940

RESUMO

Spinal cord injury (SCI) is a major cause of paralysis. Currently, there are no effective therapies to reverse this disabling condition. The presence of ependymal stem/progenitor cells (epSPCs) in the adult spinal cord suggests that endogenous stem cell-associated mechanisms might be exploited to repair spinal cord lesions. epSPC cells that proliferate after SCI are recruited by the injured zone, and can be modulated by innate and adaptive immune responses. Here we demonstrate that when epSPCs are cultured from rats with a SCI (ependymal stem/progenitor cells injury [epSPCi]), these cells proliferate 10 times faster in vitro than epSPC derived from control animals and display enhanced self renewal. Genetic profile analysis revealed an important influence of inflammation on signaling pathways in epSPCi after injury, including the upregulation of Jak/Stat and mitogen activated protein kinase pathways. Although neurospheres derived from either epSPCs or epSPCi differentiated efficiently to oligodendrocites and functional spinal motoneurons, a better yield of differentiated cells was consistently obtained from epSPCi cultures. Acute transplantation of undifferentiated epSPCi or the resulting oligodendrocyte precursor cells into a rat model of severe spinal cord contusion produced a significant recovery of motor activity 1 week after injury. These transplanted cells migrated long distances from the rostral and caudal regions of the transplant to the neurofilament-labeled axons in and around the lesion zone. Our findings demonstrate that modulation of endogenous epSPCs represents a viable cell-based strategy for restoring neuronal dysfunction in patients with spinal cord damage.


Assuntos
Epêndima/citologia , Traumatismos da Medula Espinal/terapia , Medula Espinal/citologia , Medula Espinal/patologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Apoptose , Western Blotting , Diferenciação Celular/fisiologia , Proliferação de Células , Sobrevivência Celular , Eletrofisiologia , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Oligodendroglia/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo , Células-Tronco/fisiologia
18.
Tissue Eng Part A ; 14(8): 1365-75, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18491954

RESUMO

A series of polymeric biomaterials, including poly(methyl acrylate), chitosan, poly(ethyl acrylate) (PEA), poly(hydroxyethyl acrylate) (PHEA), and a series of random copolymers containing ethyl acrylate, hydroxyethyl acrylate, and methyl acrylate were tested in vitro as culture substrates and compared for their effect on the differentiation of neural stem cells (NSCs) obtained from the subventricular zone of postnatal rats. Immunocytochemical assay for specific markers and scanning electron microscopy techniques were employed to determine the adhesion of the cultured NSCs to the different biomaterials and the respective neuronal differentiation. The functional properties and the membrane excitability of differentiated NSCs were investigated using a patch-clamp. The results show that the substrate's surface chemistry influences cell attachment and neuronal differentiation, probably through its influence on adsorbed laminin, and that copolymers based on PEA and PHEA in a narrow composition window are suitable substrates to promote cell attachment and differentiation of adult NSCs into functional neurons and glia.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Laminina/farmacologia , Neuroglia/citologia , Neurônios/citologia , Polímeros/farmacologia , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Eletrofisiologia , Microscopia de Força Atômica , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Poli-Hidroxietil Metacrilato/análogos & derivados , Poli-Hidroxietil Metacrilato/farmacologia , Ratos , Células-Tronco/efeitos dos fármacos , Células-Tronco/ultraestrutura
19.
PLoS One ; 3(5): e2122, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18461168

RESUMO

BACKGROUND: Human embryonic stem cells (hESC) provide a unique model to study early events in human development. The hESC-derived cells can potentially be used to replace or restore different tissues including neuronal that have been damaged by disease or injury. METHODOLOGY AND PRINCIPAL FINDINGS: The cells of two different hESC lines were converted to neural rosettes using adherent and chemically defined conditions. The progenitor cells were exposed to retinoic acid (RA) or to human recombinant basic fibroblast growth factor (bFGF) in the late phase of the rosette formation. Exposing the progenitor cells to RA suppressed differentiation to rostral forebrain dopamine neural lineage and promoted that of spinal neural tissue including motor neurons. The functional characteristics of these differentiated neuronal precursors under both, rostral (bFGF) and caudalizing (RA) signals were confirmed by patch clamp analysis. CONCLUSIONS/SIGNIFICANCE: These findings suggest that our differentiation protocol has the capacity to generate region-specific and electrophysiologically active neurons under in vitro conditions without embryoid body formation, co-culture with stromal cells and without presence of cells of mesodermal or endodermal lineages.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/citologia , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Meios de Cultura , Eletrofisiologia , Humanos , Imuno-Histoquímica , Especificidade de Órgãos , Técnicas de Patch-Clamp , RNA/genética , RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Curr Pharm Des ; 12(28): 3583-96, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17073661

RESUMO

L-glutamate is considered the main excitatory neurotransmitter in the mammalian brain. Paradoxically, L-glutamate is also the most important excitotoxin pivotally involved in the aetiology of several neurodegenerative diseases such as stroke, Alzheimer, Parkinson, amyotropic lateral sclerosis, Huntington and neuropathic pain. L-glutamate signalling is transduced both presynaptically and postsynaptically by metabotropic and ionotropic receptors. Three types of glutamate-gated channels integrate the synaptic signal, namely AMPA, kainate and NMDA receptors. Sustained activation of these receptors, and especially of the NMDA receptor, is a casuistic phenomenon that leads to the neuronal death underlying neurodegeneration. Thus, pharmacological intervention at these neuronal receptors and their synaptic protein complexes is a valuable therapeutic strategy. The approval of memantine, a safe, well-tolerated uncompetitive NMDA antagonist for the treatment of moderate to severe Alzheimer dementia validates ionotropic glutamate receptors as key therapeutic targets of neurodegenerative diseases in humans. As a consequence, an enormous effort is being carried out to identify and develop safe and potent antagonists for the clinics. In this review, we will describe progress in this important arena of human health.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Antagonistas de Aminoácidos Excitatórios/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA