RESUMO
CCN proteins affect cell proliferation, migration, attachment, and differentiation. We identified CCN3 as a suppressed gene following platelet-derived growth factor (PDGF)-BB or -DD stimulation in a cDNA-array analysis of mesangial cells. In vitro growth-arrested mesangial cells overexpressed and secreted CCN3, whereas the addition of the recombinant protein inhibited cell growth. Induction of mesangial cell proliferation by PDGF-BB or the specific PDGF beta-receptor ligand PDGF-DD led to downregulation of CCN3 mRNA, confirming the array study. Specific PDGF alpha-receptor ligands had no effect. CCN3 protein was found in arterial smooth muscle cells, the medullary interstitium, and occasional podocytes in the healthy rat kidney. Glomerular CCN3 was low prior to mesangial proliferation but increased as glomerular cell proliferation subsided during mesangioproliferative glomerulonephritis (GN). Inhibition of PDGF-B in mesangioproliferative disease led to overexpression of glomerular CCN3 mRNA. CCN3 localized mostly to podocytes in human glomeruli, but this expression varied widely in different human glomerulonephritides. Glomerular cell proliferation negatively correlated with CCN3 expression in necrotizing GN. Our study identifies CCN3 as an endogenous inhibitor of mesangial cell growth and a modulator of PDGF-induced mitogenesis.
Assuntos
Glomerulonefrite Membranoproliferativa/patologia , Proteínas Imediatamente Precoces/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Glomérulos Renais/patologia , Células Mesangiais/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Becaplermina , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo , Glomerulonefrite Membranoproliferativa/genética , Glomerulonefrite Membranoproliferativa/metabolismo , Humanos , Proteínas Imediatamente Precoces/análise , Proteínas Imediatamente Precoces/genética , Peptídeos e Proteínas de Sinalização Intercelular/análise , Peptídeos e Proteínas de Sinalização Intercelular/genética , Glomérulos Renais/metabolismo , Ligantes , Células Mesangiais/metabolismo , Proteína Sobre-Expressa em Nefroblastoma , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Podócitos/química , Podócitos/metabolismo , Podócitos/patologia , Proteínas Proto-Oncogênicas c-sis , RNA Mensageiro/metabolismo , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/agonistas , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/agonistas , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismoRESUMO
Previous work had suggested that recombinant CCN3 was partially inhibiting cell proliferation. Here we show that native CCN3 protein secreted into the conditioned medium of glioma transfected cells indeed induces a reduction in cell proliferation. Large amounts of CCN3 are shown to accumulate both cytoplasmically and extracellularly as cells reach high density, therefore highlighting new aspects on how cell growth may be regulated by CCN proteins. Evidence is presented establishing that the amount of CCN3 secreted into cell culture medium is regulated by post-translational proteolysis. As a consequence, the production of CCN3 varies throughout the cell cycle and CCN3 accumulates at the G2/M transition of the cycle. We also show that CCN3-induced inhibition of cell growth can be partially reversed by specific antibodies raised against a C-terminal peptide of CCN3. The use of several clones expressing various portions of CCN3 established that the CT module of CCN3 is sufficient to induce cell growth inhibition.
Assuntos
Proliferação de Células , Proteínas Imediatamente Precoces/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Ciclo Celular/fisiologia , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo , Meios de Cultura/química , Regulação da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Sobre-Expressa em Nefroblastoma , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
The retinal pigment epithelium (RPE) develops from the same sheet of neuroepithelium as the neuroretina. When infected with MC29, a v-myc expressing virus, the RPE cells can be induced to transdifferentiate and to take a neuroretinal epithelium fate. After a PCR-based differential screening from these cells we have identified three genes of interest. Qath5, a quail basic helix-loop-helix (bHLH) gene that is closely related to the Drosophila atonal, and whose expression is found in the developing neuroretina. A Chx10-related homeobox gene also expressed in the developing neuroretina and HuD, a RNA-binding protein not expressed in the RPE but expressed during neurogenesis. Beside these genes whose function is involved in regulating neuronal differentiation myc also induced a transient Mitf expression. Mitf is expressed in the entire optic cup, later restricted to the pigmented retina. Mitf is involved in the regulation of the pigmented differentiation. We conclude that v-myc can reverse the RPE to the bipotential retinal primordia.
Assuntos
Alpharetrovirus/fisiologia , Proteínas do Olho/biossíntese , Genes myc , Substâncias de Crescimento , Proteína Oncogênica p55(v-myc)/fisiologia , Epitélio Pigmentado Ocular/embriologia , Proteínas de Peixe-Zebra , Alpharetrovirus/genética , Diferenciação Celular , Transformação Celular Viral/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas ELAV , Olho/embriologia , Proteínas do Olho/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Sequências Hélice-Alça-Hélice , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Fator de Transcrição Associado à Microftalmia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Epitélio Pigmentado Ocular/citologia , Reação em Cadeia da Polimerase , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genéticaRESUMO
The Quail Neuroretina clone 71 gene (QNR-71) is expressed during the differentiation of retinal pigmented epithelia and the epidermis. It encodes a type I transmembrane glycoprotein that shares significant sequence homologies with several melanosomal proteins. We have studied its intracellular traffic in both pigmented and non-pigmented cells. We report that a di-leucine-based sorting signal (ExxPLL) present in the cytoplasmic domain of QNR-71 is necessary and sufficient for its proper targeting to the endosomal/premelanosomal compartments of both pigmented and non-pigmented cells. The intracellular transport of QNR-71 to these compartments is mediated by the AP-3 assembly proteins. As previously observed for the lysosomal glycoproteins Lampl and LimpII, overexpression of QNR-71 increases the amount of AP-3 associated with membranes, and inhibition of AP-3 synthesis increases the routing of QNR-71 towards the cell surface. In addition, expression of QNR-71 induces a misrouting of endogenous LampI to the cell surface. Thus, the targeting of QNR-71 might be similar to that of the lysosomal integral membrane glycoproteins LampI and LimpII. This suggests that sorting to melanosomes and lysosomes requires similar sorting signals and transport machineries.
Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Melanossomas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Montagem de Clatrina , Epitélio Pigmentado Ocular/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Proteínas Adaptadoras de Transporte Vesicular , Animais , Proteínas de Transporte/genética , Embrião de Galinha , Células HeLa , Humanos , Leucina/metabolismo , Proteínas de Membrana/genética , Mutagênese/fisiologia , Epitélio Pigmentado Ocular/citologia , Transporte Proteico/fisiologia , Codorniz , TransfecçãoRESUMO
In the endocrine pancreas, alpha-cell-specific expression of the glucagon gene is mediated by DNA-binding proteins that interact with the G1 proximal promoter element. Among these proteins, the paired domain transcription factor Pax-6 has been shown to bind to G1 and to transactivate glucagon gene expression. Close to the Pax-6-binding site, we observed the presence of a binding site for a basic leucine zipper transcription factor of the Maf family. In the present study, we demonstrate the presence of Maf family members in the endocrine pancreas that bind to G1 and transactivate glucagon promoter expression. In transient transfection experiments, we found that the transactivating effect on the glucagon promoter was greatly enhanced by the simultaneous expression of Maf transcription factors and Pax-6. This enhancement on glucagon transactivation could be correlated with the ability of these proteins to interact together but does not require binding of Maf proteins to the G1 element. Furthermore, we found that Maf enhanced the Pax-6 DNA binding capacity. Our data indicate that Maf transcription factors may contribute to glucagon gene expression in the pancreas.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Glucagon/genética , Proteínas de Homeodomínio/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Cricetinae , DNA/metabolismo , Primers do DNA , Proteínas do Olho , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Ligação Proteica , Proteínas Proto-Oncogênicas c-maf , Proteínas Repressoras , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação TranscricionalRESUMO
Pax-6 and microphthalmia transcription factor (Mitf) are required for proper eye development. Pax-6, expressed in both the neuroretina and pigmented retina, has two DNA-binding domains: the paired domain and the homeodomain. Mice homozygous for Pax-6 mutations are anophthalmic. Mitf, a basic helix-loop-helix leucine zipper (b-HLH-LZ) transcription factor associated with the onset and maintenance of pigmentation, identifies the retinal pigmented epithelium during eye development. Loss of Mitf function results in the formation of an ectopic neuroretina at the expense of the dorsal retinal pigmented epithelium. In the present study, we investigated the interaction between Pax-6 and Mitf. In transient transfection-expression experiments, we found that transactivating effects of Pax-6 and Mitf on their respective target promoters were strongly inhibited by co-transfection of both transcription factors. This repression was due to direct protein/protein interactions involving both Pax-6 DNA-binding domains and the Mitf b-HLH-LZ domain. These results suggest that Pax-6/Mitf interactions may be critical for retinal pigmented epithelium development.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Epitélio Pigmentado Ocular/fisiologia , Transcrição Gênica , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cricetinae , Sondas de DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas do Olho , Genes Reporter , Proteínas de Fluorescência Verde , Sequências Hélice-Alça-Hélice , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Homozigoto , Zíper de Leucina , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Camundongos , Fator de Transcrição Associado à Microftalmia , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/crescimento & desenvolvimento , Biossíntese de Proteínas , Codorniz , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras , Mapeamento por Restrição , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , TransfecçãoRESUMO
The microphthalmia gene (mi) appears to be required for pigment cell development, based on its mutation in mi mice. The mi gene encodes a basic helix-loop-helix leucine zipper transcription factor (Mi) with tissue-restricted expression. To investigate the role of mi in cell proliferation and pigmentation, we transfected neuroretina (NR) cells with a recombinant virus expressing the murine mi cDNA. The virus induced the proliferation of chicken NR cells in response to fibroblast growth factor 2, which enabled them to form colonies in soft agar. In contrast to control cultures, transfected chicken NR cells or quail NR cells became rapidly pigmented and strongly expressed the QNR-71 mRNA encoding a melanosomal protein. These results demonstrate that Mi not only acts as pigmentation inducer but is also able to modulate the response of cells to growth factors.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Sequências Hélice-Alça-Hélice , Zíper de Leucina , Pigmentação/genética , Retina/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Proteínas de Ligação a DNA/biossíntese , Embrião não Mamífero , Proteínas do Olho/biossíntese , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Fator de Transcrição Associado à Microftalmia , Dados de Sequência Molecular , Codorniz , Retina/citologia , Retina/embriologia , Retroviridae/genética , Alinhamento de Sequência , Fatores de Transcrição/biossínteseRESUMO
Quail neuroretina cells (QNR) infected with the v-myc-expressing retrovirus MC29 become pigmented after several passages in vitro. After differential screening of a cDNA library constructed from these cells, we have isolated a cDNA clone (QNR-71) which identifies an RNA expressed only in the pigmented layer of the retina and in the epidermis. This gene can also be induced in other cell types transformed by MC29, suggesting that QNR-71 may be regulated by the v-myc protein. Sequence analysis showed that the QNR-71 cDNA exhibits stretches of homologies with melanosomal proteins encoding genes. From bacterially expressed QNR-71 peptides we obtained rabbit antisera able to specifically recognize two proteins of 95 and 100 kDa in pigmented retinal cells, but not in the neuroretina. To study the regulation of QNR-71, we used promoter fragments linked to the CAT reporter gene, in transient co-expression assay. We observed an increase in CAT expression with a c-MYC and microphtalmia (mi) expression vectors. Both MYC and mi activate the QNR-71 promoter through direct binding to a CATGTG site present in the promoter fragment.