Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 5(11): 13971-13980, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465259

RESUMO

Zn1-x Sn x O y (ZTO) deposited by atomic layer deposition has shown promising results as a buffer layer material for kesterite Cu2ZnSnS4 (CZTS) thin film solar cells. Increased performance was observed when a ZTO buffer layer was used as compared to the traditional CdS buffer, and the performance was further increased after an air annealing treatment of the absorber. In this work, we study how CZTS absorber surface treatments may influence the chemical and electronic properties at the ZTO/CZTS interface and the reactions that may occur at the absorber surface prior to atomic layer deposition of the buffer layer. For this, we have used a combination of microscopy and synchrotron-based spectroscopies with variable information depths (X-ray photoelectron spectroscopy, high-energy X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy), allowing for an in-depth analysis of the CZTS near-surface regions and bulk material properties. No significant ZTO buffer thickness variation is observed for the differently treated CZTS absorbers, and no differences are observed when comparing the bulk properties of the samples. However, the formation of SnO x and compositional changes observed toward the CZTS surface upon an air annealing treatment may be linked to the modified buffer layer growth. Further, the results indicate that the initial N2 annealing step integrated in the buffer layer growth by atomic layer deposition, which removes Na-CO x species from the CZTS surface, may be useful for the ZTO/CZTS device performance.

5.
Faraday Discuss ; 239(0): 38-50, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35916023

RESUMO

Kesterite Cu2ZnSnS4 (CZTS), used for thin film solar cells, has a band gap energy around 1.5-1.6 eV with possibilities for further increase through alloying. In some applications for wide band gap solar cells, reduced absorber thickness can be beneficial, to allow partial light transmission. Reduced thickness can also be beneficial to reduce bulk recombination, and so called ultrathin solar cells (<700 nm thick) have been studied for several materials systems. Here, we report performance for CZTS devices down to 250 nm thickness and show that performance loss from thickness reduction is relatively small, partly due to short minority carrier diffusion length. Insertion of thin passivation layers (Al2O3, SiO2 or HfO2) at the Mo/CZTS interface gives improved performance of ultrathin devices, from 4.7% to 5.6% efficiency for best performing cells having 250 nm thick CZTS with Mo as compared to Mo/Al2O3 back contact. The approach of NaF post deposition for making isolating passivation layers conductive is tested for the first time for CZTS and is shown to work. For fabrication of CZTS devices on transparent ITO back contact, the insertion of passivation layers can reduce diffusion of indium into CZTS, but device performance is lower than on Mo back contacts.

6.
Faraday Discuss ; 239(0): 357-374, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35862189

RESUMO

Chalcopyrite Cu(In,Ga)Se2 (CIGSe) solar absorbers are renowned for delivering high solar power conversion efficiency despite containing high concentration of lattice defects amounting to copper deficiencies of several atomic percent. The unique ability to incorporate this deficiency without triggering decomposition (i.e. "tolerance to off-stoichiometry") is viewed by many as the key feature of CIGSe. In principle, this property could benefit any solar absorber, but remarkably little attention has been paid to it so far. In this study, we assess the tolerance to off-stoichiometry of thin-film photovoltaic materials by carrying out ab initio analysis of group-I-poor ordered defect compounds (ODCs) in the extended family of I-III-VI systems (where I = Cu, Ag, III = Al, Ga, In, and VI = S, Se, Te). We analyze convex hulls and structural evolution with respect to group-I content, link them with experimental phase diagrams, and determine two empirical principles for the future identification of solar energy materials with high tolerance to off-stoichiometry. Practical implications for the deposition of I-III-VI absorbers are also discussed in light of our computational results and recent experimental findings.

7.
Adv Sci (Weinh) ; 9(23): e2200848, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35726048

RESUMO

The chalcopyrite Cu(In,Ga)S2 has gained renewed interest in recent years due to the potential application in tandem solar cells. In this contribution, a combined theoretical and experimental approach is applied to investigate stable and metastable phases forming in CuInS2 (CIS) thin films. Ab initio calculations are performed to obtain formation energies, X-ray diffraction (XRD) patterns, and Raman spectra of CIS polytypes and related compounds. Multiple CIS structures with zinc-blende and wurtzite-derived lattices are identified and their XRD/Raman patterns are shown to contain overlapping features, which could lead to misidentification. Thin films with compositions from Cu-rich to Cu-poor are synthesized via a two-step approach based on sputtering from binary targets followed by high-temperature sulfurization. It is discovered that several CIS polymorphs are formed when growing the material with this approach. In the Cu-poor material, wurtzite CIS is observed for the first time in sputtered thin films along with chalcopyrite CIS and CuAu-ordered CIS. Once the wurtzite CIS phase has formed, it is difficult to convert into the stable chalcopyrite polymorph. CuIn5 S8 and NaInS2 accommodating In-excess are found alongside the CIS polymorphs. It is argued that the metastable polymorphs are stabilized by off-stoichiometry of the precursors, hence tight composition control is required.

8.
ACS Appl Mater Interfaces ; 14(12): 14342-14358, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35297597

RESUMO

Multijunction solar cells in a tandem configuration could further lower the costs of electricity if crystalline Si (c-Si) is used as the bottom cell. However, for direct monolithic integration on c-Si, only a restricted number of top and bottom cell architectures are compatible, due to either epitaxy or high-temperature constraints, where the interface between subcells is subject to a trade-off between transmittance, electrical interconnection, and bottom cell degradation. Using polySi/SiOx passivating contacts for Si, this degradation can be largely circumvented by tuning the polySi/SiOx stacks to promote gettering of contaminants admitted into the Si bottom cell during the top cell synthesis. Applying this concept to the low-cost top cell chalcogenides Cu2ZnSnS4 (CZTS), CuGaSe2 (CGSe), and AgInGaSe2 (AIGSe), fabricated under harsh S or Se atmospheres above 550 °C, we show that increasing the heavily doped polySi layer thickness from 40 to up to 400 nm prevents a reduction in Si carrier lifetime by 1 order of magnitude, with final lifetimes above 500 µs uniformly across areas up to 20 cm2. In all cases, the increased resilience was correlated with a 99.9% reduction in contaminant concentration in the c-Si bulk, provided by the thick polySi layer, which acts as a buried gettering layer in the tandem structure without compromising the Si passivation quality. The Si resilience decreased as AIGSe > CGSe > CZTS, in accordance with the measured Cu contamination profiles and higher annealing temperatures. An efficiency of up to 7% was achieved for a CZTS/Si tandem, where the Si bottom cell is no longer the limiting factor.

9.
ACS Appl Energy Mater ; 5(1): 461-468, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35098042

RESUMO

Ag alloying and the introduction of alkali elements through a postdeposition treatment are two approaches to improve the performance of Cu(In,Ga)Se2 (CIGS) thin film solar cells. In particular, a postdeposition treatment of an alkali metal fluoride of the absorber has shown a beneficial effect on the solar cells performance due to an increase in the open circuit voltage (V OC) for both (Ag,Cu)(In,Ga)Se2 (ACIGS) and CIGS based solar cells. Several reasons have been suggested for the improved V OC in CIGS solar cells including absorber surface and interface effects. Less works investigated how the applied postdeposition treatment influences the ACIGS absorber surface and interface properties and the subsequent buffer layer growth. In this work we employed hard X-ray photoelectron spectroscopy to study the chemical and electronic properties at the real functional interface between a CdS buffer and ACIGS absorbers that have been exposed to different alkali metal fluoride treatments during preparation. All samples show an enhanced Ag content at the CdS/ACIGS interface as compared to ACIGS bulk-like composition, and it is also shown that this enhanced Ag content anticorrelates with Ga content. The results indicate that the absorber composition at the near-surface region changes depending on the applied alkali postdeposition treatment. The Cu and Ga decrease and the Ag increase are stronger for the RbF treatment as compared to the CsF treatment, which correlates with the observed device characteristics. This suggests that a selective alkali postdeposition treatment could change the ACIGS absorber surface composition, which can influence the solar cell behavior.

10.
Microsc Microanal ; 25(2): 532-538, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30853031

RESUMO

Surface sulfurization of Cu(In,Ga)Se2 (CIGSe) absorbers is a commonly applied technique to improve the conversion efficiency of the corresponding solar cells, via increasing the bandgap towards the heterojunction. However, the resulting device performance is understood to be highly dependent on the thermodynamic stability of the chalcogenide structure at the upper region of the absorber. The present investigation provides a high-resolution chemical analysis, using energy dispersive X-ray spectrometry and laser-pulsed atom probe tomography, to determine the sulfur incorporation and chemical re-distribution in the absorber material. The post-sulfurization treatment was performed by exposing the CIGSe surface to elemental sulfur vapor for 20 min at 500°C. Two distinct sulfur-rich phases were found at the surface of the absorber exhibiting a layered structure showing In-rich and Ga-rich zones, respectively. Furthermore, sulfur atoms were found to segregate at the absorber grain boundaries showing concentrations up to ~7 at% with traces of diffusion outwards into the grain interior.

11.
ACS Appl Mater Interfaces ; 8(28): 18600-7, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27356214

RESUMO

Formation of Na-containing surface compounds is an important phenomenon in the Cu2ZnSnS4 (CZTS) quaternary material synthesis for solar cell applications. Still, identification of these compounds and the understanding of their potential influence on buffer layer growth and device performance are scarce. In this work, we discovered that the evolution of Na-S(-O) compounds on the CZTS surface substantially affect the solution/CZTS interface during the chemical bath deposition of CdS buffer film. We showed that Na2S negatively affects the growth of CdS, and that this compound is likely to form on the CZTS surface after annealing. It was also demonstrated that the Na2S compound can be oxidized to Na2SO4 by air exposure of the annealed CZTS surface or be removed using water dipping instead of the commonly used KCN etching process, resulting in significantly better quality of the CdS layer. Lastly, 6.5% CZTS solar cells were fabricated with air exposure treatment without incorporation of the KCN etching process. This work provides new insight into the growth of the CdS/CZTS interface for solar cell applications and opens new possibilities for improving likewise Cd-free buffer materials that are grown with a similar chemical bath deposition process.

12.
J Am Chem Soc ; 134(47): 19330-3, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23146047

RESUMO

Experimental proof is presented for a hitherto undetected solid-state reaction between the solar cell material Cu(2)ZnSn(S,Se)(4) (CZTS(e)) and the standard metallic back contact, molybdenum. Annealing experiments combined with Raman and transmission electron microscopy studies show that this aggressive reaction causes formation of MoS(2) and secondary phases at the CZTS|Mo interface during thermal processing. A reaction scheme is presented and discussed in the context of current state-of-the-art synthesis methods for CZTS(e). It is concluded that alternative back contacts will be important for future improvements in CZTS(e) quality.

13.
Phys Rev Lett ; 97(14): 146403, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-17155274

RESUMO

Photoelectron spectroscopy, optical characterization, and density functional calculations of ZnO1-xSx reveal that the valence-band (VB) offset E(v)(x) increases strongly for small S content, whereas the conduction-band edge E(c)(x) increases only weakly. This is explained as the formation of local ZnS-like bonds in the ZnO host, which mainly affects the VB edge and thereby narrows the energy gap: E(g)(x=0.28) approximately E(g)(ZnO)-0.6 eV. The low-energy absorption tail is a direct Gamma(v)-->Gamma(c) transition from ZnS-like VB. The VB bowing can be utilized to enhance p-type N(O) doping with lower formation energy DeltaH(f) and shallower acceptor state in the ZnO-like alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA