Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5264, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347219

RESUMO

The present study investigates the effect of an oxidized nanocrystalline diamond (O-NCD) coating functionalized with bone morphogenetic protein 7 (BMP-7) on human osteoblast maturation and extracellular matrix mineralization in vitro and on new bone formation in vivo. The chemical structure and the morphology of the NCD coating and the adhesion, thickness and morphology of the superimposed BMP-7 layer have also been assessed. The material analysis proved synthesis of a conformal diamond coating with a fine nanostructured morphology on the Ti6Al4V samples. The homogeneous nanostructured layer of BMP-7 on the NCD coating created by a physisorption method was confirmed by AFM. The osteogenic maturation of hFOB 1.19 cells in vitro was only slightly enhanced by the O-NCD coating alone without any increase in the mineralization of the matrix. Functionalization of the coating with BMP-7 resulted in more pronounced cell osteogenic maturation and increased extracellular matrix mineralization. Similar results were obtained in vivo from micro-CT and histological analyses of rabbit distal femurs with screws implanted for 4 or 12 weeks. While the O-NCD-coated implants alone promoted greater thickness of newly-formed bone in direct contact with the implant surface than the bare material, a further increase was induced by BMP-7. It can be therefore concluded that O-NCD coating functionalized with BMP-7 is a promising surface modification of metallic bone implants in order to improve their osseointegration.


Assuntos
Proteína Morfogenética Óssea 7 , Osseointegração , Ligas , Animais , Proteína Morfogenética Óssea 7/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Diamante/química , Matriz Extracelular , Coelhos , Titânio
2.
Nanomaterials (Basel) ; 11(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924537

RESUMO

Platelet lysate (PL) provides a natural source of growth factors and other bioactive molecules, and the local controlled release of these bioactive PL components is capable of improving the healing of chronic wounds. Therefore, we prepared composite nanofibrous meshes via the needleless electrospinning technique using poly(vinyl alcohol) (PVA) with a high molecular weight and with a high degree of hydrolysis with the incorporated PL (10% w/w). The morphology, wettability and protein release from the nanofibers was then assessed from the resulting composite PVA-PL nanomats. The bioactivity of the PVA-PL nanomats was proved in vitro using HaCaT keratinocytes, human saphenous endothelial cells (HSVECs) and 3T3 fibroblasts. The PVA-PL supported cell adhesion, proliferation, and viability. The improved phenotypic maturation of the HaCaT cells due to the PVA-PL was manifested via the formation of intermediate filaments positive for cytokeratin 10. The PVA-PL enhanced both the synthesis of the von Willebrand factor via HSVECs and HSVECs chemotaxis through membranes with 8 µm-sized pores. These results indicated the favorable effects of the PVA-PL nanomats on the three cell types involved in the wound healing process, and established PVA-PL nanomats as a promising candidate for further evaluation with respect to in vivo experiments.

3.
Connect Tissue Res ; 62(5): 554-569, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32951485

RESUMO

AIM: Clubfoot is a congenital deformity affecting the musculoskeletal system, resulting in contracted and stiff tissue in the medial part of the foot. Minoxidil (MXD) has an inhibitory effect on lysyl hydroxylase, which influences the quality of extracellular matrix crosslinking, and could therefore be used to reduce the stiffness and to improve the flexibility of the tissue. We assessed the in vitro antifibrotic effects of minoxidil on clubfoot-derived cells. METHODS: Cell viability and proliferation were quantified by xCELLigence, MTS, and LIVE/DEAD assays. The amount of collagen I deposited into the extracellular matrix was quantified using immunofluorescence with subsequent image segmentation analysis, hydroxyproline assay, and Second Harmonic Generation imaging. Extracellular matrix contraction was studied in a 3D model of cell-populated collagen gel lattices. RESULTS: MXD concentrations of 0.25, 0.5, and 0.75 mM inhibited the cell proliferation in a concentration-dependent manner without causing a cytotoxic effect. Exposure to ≥0.5 mM MXD resulted in a decrease in collagen type I accumulation after 8 and 21 days in culture. Changes in collagen fiber assembly were observed by immunofluorescence microscopy and nonlinear optical microscopy (second harmonic generation). MXD also inhibited the contraction of cell-populated collagen lattices (0.5 mM by 22%; 0.75 mM by 28%). CONCLUSIONS: Minoxidil exerts an in vitro inhibitory effect on the cell proliferation, collagen accumulation, and extracellular matrix contraction processes that are associated with clubfoot fibrosis. This study provides important preliminary results demonstrating the potential relevance of MXD for adjuvant pharmacological therapy in standard treatment of relapsed clubfoot.


Assuntos
Pé Torto Equinovaro , Colágeno , Colágeno Tipo I , Tratamento Conservador , Humanos , Minoxidil/farmacologia
4.
Nanomaterials (Basel) ; 10(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751860

RESUMO

Hydrogels are suitable for osteochondral defect regeneration as they mimic the viscoelastic environment of cartilage. However, their biomechanical properties are not sufficient to withstand high mechanical forces. Therefore, we have prepared electrospun poly-ε-caprolactone-chitosan (PCL-chit) and poly(ethylene oxide)-chitosan (PEO-chit) nanofibers, and FTIR analysis confirmed successful blending of chitosan with other polymers. The biocompatibility of PCL-chit and PEO-chit scaffolds was tested; fibrochondrocytes and chondrocytes seeded on PCL-chit showed superior metabolic activity. The PCL-chit nanofibers were cryogenically grinded into microparticles (mean size of about 500 µm) and further modified by polyethylene glycol-biotin in order to bind the anti-CD44 antibody, a glycoprotein interacting with hyaluronic acid (PCL-chit-PEGb-antiCD44). The PCL-chit or PCL-chit-PEGb-antiCD44 microparticles were mixed with a composite gel (collagen/fibrin/platelet rich plasma) to improve its biomechanical properties. The storage modulus was higher in the composite gel with microparticles compared to fibrin. The Eloss of the composite gel and fibrin was higher than that of the composite gel with microparticles. The composite gel either with or without microparticles was further tested in vivo in a model of osteochondral defects in rabbits. PCL-chit-PEGb-antiCD44 significantly enhanced osteogenic regeneration, mainly by desmogenous ossification, but decreased chondrogenic differentiation in the defects. PCL-chit-PEGb showed a more homogeneous distribution of hyaline cartilage and enhanced hyaline cartilage differentiation.

5.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230810

RESUMO

Mineralization of hydrogel biomaterials with calcium phosphate (CaP) is considered advantageous for bone regeneration. Mineralization can be both induced by the enzyme alkaline phosphatase (ALP) and promoted by calcium-binding biomolecules, such as plant-derived polyphenols. In this study, ALP-loaded gellan gum (GG) hydrogels were enriched with gallotannins, a subclass of polyphenols. Five preparations were compared, namely three tannic acids of differing molecular weight (MW), pentagalloyl glucose (PGG), and a gallotannin-rich extract from mango kernel (Mangifera indica L.). Certain gallotannin preparations promoted mineralization to a greater degree than others. The various gallotannin preparations bound differently to ALP and influenced the size of aggregates of ALP, which may be related to ability to promote mineralization. Human osteoblast-like Saos-2 cells grew in eluate from mineralized hydrogels. Gallotannin incorporation impeded cell growth on hydrogels and did not impart antibacterial activity. In conclusion, gallotannin incorporation aided mineralization but reduced cytocompatibility.


Assuntos
Biomimética/métodos , Hidrogéis/química , Taninos Hidrolisáveis/metabolismo , Plantas/metabolismo , Polissacarídeos/química , Fosfatase Alcalina/metabolismo , Antibacterianos/farmacologia , Materiais Biocompatíveis , Regeneração Óssea , Calcificação Fisiológica/efeitos dos fármacos , Fosfatos de Cálcio , Humanos , Taninos Hidrolisáveis/farmacologia , Mangifera/química , Minerais/química , Osteoblastos/metabolismo , Extratos Vegetais/química , Polifenóis/química , Polissacarídeos Bacterianos
6.
Regen Med ; 14(5): 423-445, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31180294

RESUMO

Aim: This study evaluates the effect of electrospun dressings in critical sized full-thickness skin defects in rabbits. Materials & methods: Electrospun poly-ε-caprolactone (PCL) and polyvinyl alcohol (PVA) nanofibers were tested in vitro and in vivo. Results: The PCL scaffold supported the proliferation of mesenchymal stem cells, fibroblasts and keratinocytes. The PVA scaffold showed significant swelling, high elongation capacity, limited protein adsorption and stimulation of cells. Nanofibrous dressings improved wound healing compared with the control group in vivo. A change of the PCL dressing every 7 days resulted in a decreased epithelial thickness and type I collagen level in the adhesive group, indicating peeling off of the newly formed tissue. In the PVA dressings, the exchange did not affect healing. Conclusion: The results demonstrate the importance of proper dressing exchange.


Assuntos
Bandagens , Nanofibras/química , Poliésteres , Pele , Adesivos Teciduais , Cicatrização/efeitos dos fármacos , Células 3T3 , Animais , Camundongos , Poliésteres/química , Poliésteres/farmacologia , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Coelhos , Pele/lesões , Pele/metabolismo , Pele/patologia , Suínos , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia
7.
J Orthop Res ; 37(3): 769-778, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30615219

RESUMO

Idiopathic pes equinovarus (clubfoot) is a congenital deformity of the feet and lower legs. Clubfoot belongs to a group of fibro-proliferative disorders but its origin remains unknown. Our study aimed to achieve the first complex proteomic comparison of clubfoot contracted tissue of the foot (medial side; n = 16), with non-contracted tissue (lateral side; n = 13). We used label-free mass spectrometry quantification and immunohistochemistry. Seven proteins were observed to be significantly upregulated in the medial side (asporin, collagen type III, V, and VI, versican, tenascin-C, and transforming growth factor beta induced protein) and four in the lateral side (collagen types XII and XIV, fibromodulin, and cartilage intermediate layer protein 2) of the clubfoot. Comparison of control samples from cadavers brought only two different protein concentrations (collagen types I and VI). We also revealed pathological calcification and intracellular positivity of transforming growth factor beta only in the contracted tissue of clubfoot. Most of the 11 differently expressed proteins are strongly related to the extracellular matrix architecture and we assume that they may play specific roles in the pathogenesis of this deformity. These proteins seem to be promising targets for future investigations and treatment of this disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Assuntos
Pé Torto Equinovaro/etiologia , Proteínas da Matriz Extracelular/metabolismo , Calcinose , Criança , Pré-Escolar , Pé Torto Equinovaro/metabolismo , Feminino , Humanos , Masculino , Espectrometria de Massas , Estudos Prospectivos , Proteoma , Fator de Crescimento Transformador beta/metabolismo
8.
Int J Nanomedicine ; 13: 3129-3143, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881270

RESUMO

PURPOSE: Incisional hernia repair is an unsuccessful field of surgery, with long-term recurrence rates reaching up to 50% regardless of technique or mesh material used. Various implants and their positioning within the abdominal wall pose numerous long-term complications that are difficult to treat due to their permanent nature and the chronic foreign body reaction they trigger. Materials mimicking the 3D structure of the extracellular matrix promote cell adhesion, proliferation, migration, and differentiation. Some electrospun nanofibrous scaffolds provide a topography of a natural extracellular matrix and are cost effective to manufacture. MATERIALS AND METHODS: A composite scaffold that was assembled out of a standard polypropylene hernia mesh and poly-ε-caprolactone (PCL) nanofibers was tested in a large animal model (minipig), and the final scar tissue was subjected to histological and biomechanical testing to verify our in vitro results published previously. RESULTS: We have demonstrated that a layer of PCL nanofibers leads to tissue overgrowth and the formation of a thick fibrous plate around the implant. Collagen maturation is accelerated, and the final scar is more flexible and elastic than under a standard polypropylene mesh with less pronounced shrinkage observed. However, the samples with the composite scaffold were less resistant to distracting forces than when a standard mesh was used. We believe that the adverse effects could be caused due to the material assembly, as they do not comply with our previous results. CONCLUSION: We believe that PCL nanofibers on their own can cause enough fibroplasia to be used as a separate material without the polypropylene base, thus avoiding potential adverse effects caused by any added substances.


Assuntos
Hérnia , Herniorrafia/métodos , Nanofibras/química , Telas Cirúrgicas , Parede Abdominal/cirurgia , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Herniorrafia/instrumentação , Teste de Materiais , Camundongos , Poliésteres , Polipropilenos/química , Suínos , Porco Miniatura , Alicerces Teciduais/química
9.
Cas Lek Cesk ; 154(3): 110-4, 2015.
Artigo em Tcheco | MEDLINE | ID: mdl-26311025

RESUMO

Our aim was to show the benefits and limitations of histological assessment of healing supported by implantable biomaterials. We reviewed and showed photographs of the histological and immunohistochemical methods applicable for the assessment of desirable and undesirable effects of biomaterials on the healing of hard and soft tissues. Currently used methods for evaluating the microscopic effects of bioengineered materials on the recipient tissue are reviewed. For histopathological analysis, semiquantitative scoring systems can be used. Alternatively, the main tissue constituents may be quantified using continuous variables giving the numerical densities of cells, lengths of microvessels or connective tissue fibres, area surfaces, area and volumes fractions, or clustering and colocalization of microscopic objects. Using systematic uniform random sampling strategies at the level of tissue blocks, sections, and image fields leads to a reasonable low variability of the quantitative results.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/uso terapêutico , Osso e Ossos/patologia , Cartilagem/patologia , Pele/patologia , Cicatrização/fisiologia , Animais , Humanos , Imuno-Histoquímica , Teste de Materiais/métodos
10.
Int J Nanomedicine ; 10: 2635-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25878497

RESUMO

Incisional hernia is the most common postoperative complication, affecting up to 20% of patients after abdominal surgery. Insertion of a synthetic surgical mesh has become the standard of care in ventral hernia repair. However, the implementation of a mesh does not reduce the risk of recurrence and the onset of hernia recurrence is only delayed by 2-3 years. Nowadays, more than 100 surgical meshes are available on the market, with polypropylene the most widely used for ventral hernia repair. Nonetheless, the ideal mesh does not exist yet; it still needs to be developed. Polycaprolactone nanofibers appear to be a suitable material for different kinds of cells, including fibroblasts, chondrocytes, and mesenchymal stem cells. The aim of the study reported here was to develop a functionalized scaffold for ventral hernia regeneration. We prepared a novel composite scaffold based on a polypropylene surgical mesh functionalized with poly-ε-caprolactone (PCL) nanofibers and adhered thrombocytes as a natural source of growth factors. In extensive in vitro tests, we proved the biocompatibility of PCL nanofibers with adhered thrombocytes deposited on a polypropylene mesh. Compared with polypropylene mesh alone, this composite scaffold provided better adhesion, growth, metabolic activity, proliferation, and viability of mouse fibroblasts in all tests and was even better than a polypropylene mesh functionalized with PCL nanofibers. The gradual release of growth factors from biocompatible nanofiber-modified scaffolds seems to be a promising approach in tissue engineering and regenerative medicine.


Assuntos
Materiais Biocompatíveis , Plaquetas/citologia , Hérnia Incisional/cirurgia , Nanofibras , Poliésteres , Polipropilenos , Telas Cirúrgicas , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Nanofibras/química , Nanofibras/toxicidade , Poliésteres/química , Poliésteres/toxicidade , Polipropilenos/química , Polipropilenos/toxicidade
11.
Int J Nanomedicine ; 9: 3263-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25031534

RESUMO

Incisional hernia affects up to 20% of patients after abdominal surgery. Unlike other types of hernia, its prognosis is poor, and patients suffer from recurrence within 10 years of the operation. Currently used hernia-repair meshes do not guarantee success, but only extend the recurrence-free period by about 5 years. Most of them are nonresorbable, and these implants can lead to many complications that are in some cases life-threatening. Electrospun nanofibers of various polymers have been used as tissue scaffolds and have been explored extensively in the last decade, due to their low cost and good biocompatibility. Their architecture mimics the natural extracellular matrix. We tested a biodegradable polyester poly-ε-caprolactone in the form of nanofibers as a scaffold for fascia healing in an abdominal closure-reinforcement model for prevention of incisional hernia formation. Both in vitro tests and an experiment on a rabbit model showed promising results.


Assuntos
Técnicas de Fechamento de Ferimentos Abdominais/instrumentação , Hérnia/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Nanofibras/uso terapêutico , Poliésteres/uso terapêutico , Polipropilenos/uso terapêutico , Complicações Pós-Operatórias/prevenção & controle , Células 3T3 , Abdome/cirurgia , Animais , Fenômenos Biomecânicos , Regeneração Tecidual Guiada , Histocitoquímica , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Nanofibras/química , Poliésteres/química , Polipropilenos/química , Coelhos , Telas Cirúrgicas , Cicatrização/efeitos dos fármacos
12.
Mater Sci Eng C Mater Biol Appl ; 32(6): 1366-74, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24364933

RESUMO

In this paper, the treatment of poly-ε-caprolactone (PCL) nano/micro-mesh system by cryogenic grinding and subsequent characterization of obtained product is described. The PCL nano/micro-mesh layer submerged in appropriate liquid was cryogenically ground and obtained particles were characterized employing mainly laser diffraction and scanning electron microscopy (SEM). In the ground sample, different types of particles (fibrous particles, fibrous fragments, agglomerates with and without an internal fibrous structure, lamellae and nanoparticles) were identified, described and quantified. Parameters of cryogenic grinding (weight of sample, type of liquid medium, and influence of sample storage) were optimized to maximize the yield of particles with desired features. The potential of the system for cell scaffolding was demonstrated by cultivation of 3T3 fibroblasts on the produced microparticles.


Assuntos
Nanopartículas/química , Poliésteres/química , Células 3T3 , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Varredura/métodos , Poliésteres/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA