Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO Rep ; 23(11): e51709, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36094794

RESUMO

Phosphatidylserine (PS) is a critical lipid factor in the assembly and spread of numerous lipid-enveloped viruses. Here, we describe the ability of the Ebola virus (EBOV) matrix protein eVP40 to induce clustering of PS and promote viral budding in vitro, as well as the ability of an FDA-approved drug, fendiline, to reduce PS clustering and subsequent virus budding and entry. To gain mechanistic insight into fendiline inhibition of EBOV replication, multiple in vitro assays were run including imaging, viral budding and viral entry assays. Fendiline lowers PS content in mammalian cells and PS in the plasma membrane, where the ability of VP40 to form new virus particles is greatly lower. Further, particles that form from fendiline-treated cells have altered particle morphology and cannot significantly infect/enter cells. These complementary studies reveal the mechanism by which EBOV matrix protein clusters PS to enhance viral assembly, budding, and spread from the host cell while also laying the groundwork for fundamental drug targeting strategies.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Doença pelo Vírus Ebola/metabolismo , Ebolavirus/fisiologia , Fosfatidilserinas/metabolismo , Fendilina/metabolismo , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Análise por Conglomerados , Mamíferos/metabolismo
2.
ACS Infect Dis ; 8(5): 942-957, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357134

RESUMO

Ebola virus (EBOV) is an aggressive filoviral pathogen that can induce severe hemorrhagic fever in humans with up to 90% fatality rate. To date, there are no clinically effective small-molecule drugs for postexposure therapies to treat filoviral infections. EBOV cellular entry and infection involve uptake via macropinocytosis, navigation through the endocytic pathway, and pH-dependent escape into the cytoplasm. We report the inhibition of EBOV cell entry via selective inhibition of vacuolar (V)-ATPase by a new series of phenol-substituted derivatives of the natural product scaffold diphyllin. In cells challenged with Ebola virus, the diphyllin derivatives inhibit viral entry dependent upon structural variations to low nanomolar potencies. Mechanistically, the diphyllin derivatives had no effect on uptake and colocalization of viral particles with endocytic marker LAMP1 but directly modulated endosomal pH. The most potent effects were reversible exhibiting higher selectivity than bafilomycin or the parent diphyllin. Unlike general lysosomotrophic agents, the diphyllin derivatives showed no major disruptions of endocytic populations or morphology when examined with Rab5 and LAMP1 markers. The dilated vacuole phenotype induced by apilimod treatment or in constitutively active Rab5 mutant Q79L-expressing cells was both blocked and reversed by the diphyllin derivatives. The results are consistent with the action of the diphyllin scaffold as a selective pH-dependent viral entry block in late endosomes. Overall, the compounds show improved selectivity and minimal cytotoxicity relative to classical endosomal acidification blocking agents.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Benzodioxóis/farmacologia , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Lignanas , Fenol/farmacologia , Fenol/uso terapêutico , Internalização do Vírus
3.
J Biol Chem ; 296: 100103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33214224

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in December 2019 in Wuhan, China, and expeditiously spread across the globe causing a global pandemic. Research on SARS-CoV-2, as well as the closely related SARS-CoV-1 and MERS coronaviruses, is restricted to BSL-3 facilities. Such BSL-3 classification makes SARS-CoV-2 research inaccessible to the majority of functioning research laboratories in the United States; this becomes problematic when the collective scientific effort needs to be focused on such in the face of a pandemic. However, a minimal system capable of recapitulating different steps of the viral life cycle without using the virus' genetic material could increase accessibility. In this work, we assessed the four structural proteins from SARS-CoV-2 for their ability to form virus-like particles (VLPs) from human cells to form a competent system for BSL-2 studies of SARS-CoV-2. Herein, we provide methods and resources of producing, purifying, fluorescently and APEX2-labeling of SARS-CoV-2 VLPs for the evaluation of mechanisms of viral budding and entry as well as assessment of drug inhibitors under BSL-2 conditions. These systems should be useful to those looking to circumvent BSL-3 work with SARS-CoV-2 yet study the mechanisms by which SARS-CoV-2 enters and exits human cells.


Assuntos
Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/genética , Vírion/crescimento & desenvolvimento , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Contenção de Riscos Biológicos/classificação , Proteínas do Envelope de Coronavírus/metabolismo , Expressão Gênica , Genes Reporter , Regulamentação Governamental , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica , Proteínas do Nucleocapsídeo/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura , Montagem de Vírus/fisiologia , Internalização do Vírus , Liberação de Vírus/fisiologia , Proteína Vermelha Fluorescente
4.
bioRxiv ; 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33024964

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in December 2019 in Wuhan, China and expeditiously spread across the globe causing a global pandemic. While a select agent designation has not been made for SARS-CoV-2, closely related SARS-CoV-1 and MERS coronaviruses are classified as Risk Group 3 select agents, which restricts use of the live viruses to BSL-3 facilities. Such BSL-3 classification make SARS-CoV-2 research inaccessible to the majority of functioning research laboratories in the US; this becomes problematic when the collective scientific effort needs to be focused on such in the face of a pandemic. In this work, we assessed the four structural proteins from SARS-CoV-2 for their ability to form viruslike particles (VLPs) from human cells to form a competent system for BSL-2 studies of SARS-CoV-2. Herein, we provide methods and resources of producing, purifying, fluorescently and APEX2-labeling of SARS-CoV-2 VLPs for the evaluation of mechanisms of viral budding and entry as well as assessment of drug inhibitors under BSL-2 conditions.

5.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825419

RESUMO

HspA1A, a molecular chaperone, translocates to the plasma membrane (PM) of stressed and cancer cells. This translocation results in HspA1A's cell-surface presentation, which renders tumors radiation insensitive. To specifically inhibit the lipid-driven HspA1A's PM translocation and devise new therapeutics it is imperative to characterize the unknown HspA1A's lipid-binding regions and determine the relationship between the chaperone and lipid-binding functions. To elucidate this relationship, we determined the effect of phosphatidylserine (PS)-binding on the secondary structure and chaperone functions of HspA1A. Circular dichroism revealed that binding to PS resulted in minimal modification on HspA1A's secondary structure. Measuring the release of inorganic phosphate revealed that PS-binding had no effect on HspA1A's ATPase activity. In contrast, PS-binding showed subtle but consistent increases in HspA1A's refolding activities. Furthermore, using a Lysine-71-Alanine mutation (K71A; a null-ATPase mutant) of HspA1A we show that although K71A binds to PS with affinities similar to the wild-type (WT), the mutated protein associates with lipids three times faster and dissociates 300 times faster than the WT HspA1A. These observations suggest a two-step binding model including an initial interaction of HspA1A with lipids followed by a conformational change of the HspA1A-lipid complex, which accelerates the binding reaction. Together these findings strongly support the notion that the chaperone and lipid-binding activities of HspA1A are dependent but the regions mediating these functions do not overlap and provide the basis for future interventions to inhibit HspA1A's PM-translocation in tumor cells, making them sensitive to radiation therapy.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Lipossomos/metabolismo , Fosfatidilserinas/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Dicroísmo Circular , Proteínas de Choque Térmico HSP70/genética , Lipossomos/química , Lisina/genética , Camundongos , Chaperonas Moleculares/metabolismo , Mutação , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/química , Ligação Proteica , Redobramento de Proteína , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície
6.
J Biol Chem ; 295(36): 12635-12647, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32661198

RESUMO

Phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) catalyzes the exchange of GDP for GTP on Rac GTPases, thereby triggering changes in the actin cytoskeleton and in transcription. Its overexpression is highly correlated with the metastasis of certain cancers. P-Rex1 recruitment to the plasma membrane and its activity are regulated via interactions with heterotrimeric Gßγ subunits, PIP3, and protein kinase A (PKA). Deletion analysis has further shown that domains C-terminal to its catalytic Dbl homology (DH) domain confer autoinhibition. Among these, the first dishevelled, Egl-10, and pleckstrin domain (DEP1) remains to be structurally characterized. DEP1 also harbors the primary PKA phosphorylation site, suggesting that an improved understanding of this region could substantially increase our knowledge of P-Rex1 signaling and open the door to new selective chemotherapeutics. Here we show that the DEP1 domain alone can autoinhibit activity in context of the DH/PH-DEP1 fragment of P-Rex1 and interacts with the DH/PH domains in solution. The 3.1 Å crystal structure of DEP1 features a domain swap, similar to that observed previously in the Dvl2 DEP domain, involving an exposed basic loop that contains the PKA site. Using purified proteins, we show that although DEP1 phosphorylation has no effect on the activity or solution conformation of the DH/PH-DEP1 fragment, it inhibits binding of the DEP1 domain to liposomes containing phosphatidic acid. Thus, we propose that PKA phosphorylation of the DEP1 domain hampers P-Rex1 binding to negatively charged membranes in cells, freeing the DEP1 domain to associate with and inhibit the DH/PH module.


Assuntos
Membrana Celular , Fatores de Troca do Nucleotídeo Guanina , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Fosforilação , Domínios Proteicos
7.
Photochem Photobiol Sci ; 19(9): 1152-1159, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32639494

RESUMO

The two-photon absorption properties of a pyrene-pyridinium dye (1) were studied for potential application in two-photon spectroscopy. When probe 1 was used in cellular two-photon fluorescence microscopy imaging, it allowed the visualization of nuclei in live cells with a relatively low probe concentration (such as 1 µM). Spectroscopic evidence further revealed that probe 1 interacted with DNA as an intercalator. The proposed DNA intercalation properties of probe 1 were consistent with the experimental findings that suggested that the observed nucleus staining ability is dependent on the substituents on the pyridinium fragment of the probe.


Assuntos
Núcleo Celular/química , Corantes Fluorescentes/química , Fótons , Pirenos/química , Animais , Células COS , Bovinos , Sobrevivência Celular , Células Cultivadas , Chlorocebus aethiops , DNA/química , Microscopia de Fluorescência , Estrutura Molecular , Compostos de Piridínio/química
8.
ACS Appl Bio Mater ; 2(11): 5174-5181, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021460

RESUMO

Bright red to NIR emitting cyanine probes 2-3 were synthesized in very good yields. Probes 2-3 exhibited excellent fluorescent quantum yields (ϕfl ≈ 0.1-0.4) and large Stokes shift (Δλ > 150 nm) due to efficient intramolecular charge transfer (ICT) in the conjugated π system. Organelle specificity of these probes was investigated by live cell fluorescence confocal microscopy studies. Probe 3 exhibited the ability to visualize the cell nucleus and mitochondria simultaneously in live cell samples during imaging experiments. However, in structurally modified probe 2 with different substituents (i.e., benzothiazolium vs benzothiazole), the selectivity of the probe switched entirely toward cellular lysosomes. Spectrometric DNA titration experiments were conducted to confirm the DNA/nucleus selectivity of probe 3. The study further evaluates the role of the substituent toward DNA selectivity. Probe 3 was identified as a valuable fluorescent marker to visually identify and study mitochondrial dysfunction in live cells via fluorescent confocal microscopy.

9.
Eur J Med Chem ; 151: 777-796, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29677635

RESUMO

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a recently discovered enzyme specifically repairing topoisomerase II (TOP2)-mediated DNA damage. It has been shown that inhibition of TDP2 synergize with TOP2 inhibitors. Herein, we report the discovery of the furoquinolinedione chemotype as a suitable skeleton for the development of selective TDP2 inhibitors. Compound 1 was identified as a TDP2 inhibitor as a result of screening our in-house compound library for compounds selective for TDP2 vs. TDP1. Further SAR studies provide several selective TDP2 inhibitors at low-micromolar range. The most potent compound 74 shows inhibitory activity with IC50 of 1.9 and 2.1 µM against recombinant TDP2 and TDP2 in whole cell extracts (WCE), respectively.


Assuntos
Proteínas Nucleares/antagonistas & inibidores , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Linhagem Celular , Galinhas , Proteínas de Ligação a DNA , Humanos , Simulação de Acoplamento Molecular , Proteínas Nucleares/metabolismo , Inibidores de Fosfodiesterase/síntese química , Diester Fosfórico Hidrolases , Quinolinas/síntese química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
10.
J Med Chem ; 60(8): 3275-3288, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28418653

RESUMO

Tdp1 and Tdp2 are two tyrosyl-DNA phosphodiesterases that can repair damaged DNA resulting from topoisomerase inhibitors and a variety of other DNA-damaging agents. Both Tdp1 and Tdp2 inhibition could hypothetically potentiate the cytotoxicities of topoisomerase inhibitors. This study reports the successful structure-based design and synthesis of new 7-azaindenoisoquinolines that act as triple inhibitors of Top1, Tdp1, and Tdp2. Enzyme inhibitory data and cytotoxicity data from human cancer cell cultures establish that modification of the lactam side chain of the 7-azaindenoisoquinolines can modulate their inhibitory potencies and selectivities vs Top1, Tdp1, and Tdp2. Molecular modeling of selected target compounds bound to Top1, Tdp1, and Tdp2 was used to design the inhibitors and facilitate the structure-activity relationship analysis. The monitoring of DNA damage by γ-H2AX foci formation in human PBMCs (lymphocytes) and acute lymphoblastic leukemia CCRF-CEM cells documented significantly more DNA damage in the cancer cells vs normal cells.


Assuntos
Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/farmacologia , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/farmacologia , Células Cultivadas , Humanos , Relação Estrutura-Atividade
11.
Bioorg Med Chem ; 24(7): 1469-79, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26906474

RESUMO

Fluorine and chlorine are metabolically stable, but generally less active replacements for a nitro group at the 3-position of indenoisoquinoline topoisomerase IB (Top1) poisons. A number of strategies were employed in the present investigation to enhance the Top1 inhibitory potencies and cancer cell growth inhibitory activities of halogenated indenoisoquinolines. In several cases, the new compounds' activities were found to rival or surpass those of similarly substituted 3-nitroindenoisoquinolines, and several unusually potent analogs were discovered through testing in human cancer cell cultures. A hydroxyethylaminopropyl side chain on the lactam nitrogen of two halogenated indenoisoquinoline Top1 inhibitors was found to also impart inhibitory activity against tyrosyl DNA phosphodiesterases 1 and 2 (TDP1 and TDP2), which are enzymes that participate in the repair of DNA damage induced by Top1 poisons.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Indenos/farmacologia , Isoquinolinas/farmacologia , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/farmacologia , Relação Dose-Resposta a Droga , Humanos , Indenos/síntese química , Indenos/química , Isoquinolinas/síntese química , Isoquinolinas/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA