Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Commun ; 14(1): 7593, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989731

RESUMO

The HIV-1 fusion peptide (FP) represents a promising vaccine target, but global FP sequence diversity among circulating strains has limited anti-FP antibodies to ~60% neutralization breadth. Here we evolve the FP-targeting antibody VRC34.01 in vitro to enhance FP-neutralization using site saturation mutagenesis and yeast display. Successive rounds of directed evolution by iterative selection of antibodies for binding to resistant HIV-1 strains establish a variant, VRC34.01_mm28, as a best-in-class antibody with 10-fold enhanced potency compared to the template antibody and ~80% breadth on a cross-clade 208-strain neutralization panel. Structural analyses demonstrate that the improved paratope expands the FP binding groove to accommodate diverse FP sequences of different lengths while also recognizing the HIV-1 Env backbone. These data reveal critical antibody features for enhanced neutralization breadth and potency against the FP site of vulnerability and accelerate clinical development of broad HIV-1 FP-targeting vaccines and therapeutics.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Peptídeos , Sequência de Aminoácidos , Vacinas de Subunidades Antigênicas , Testes de Neutralização , Produtos do Gene env do Vírus da Imunodeficiência Humana
2.
Cell ; 186(12): 2672-2689.e25, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295404

RESUMO

Alphaviruses are RNA viruses that represent emerging public health threats. To identify protective antibodies, we immunized macaques with a mixture of western, eastern, and Venezuelan equine encephalitis virus-like particles (VLPs), a regimen that protects against aerosol challenge with all three viruses. Single- and triple-virus-specific antibodies were isolated, and we identified 21 unique binding groups. Cryo-EM structures revealed that broad VLP binding inversely correlated with sequence and conformational variability. One triple-specific antibody, SKT05, bound proximal to the fusion peptide and neutralized all three Env-pseudotyped encephalitic alphaviruses by using different symmetry elements for recognition across VLPs. Neutralization in other assays (e.g., chimeric Sindbis virus) yielded variable results. SKT05 bound backbone atoms of sequence-diverse residues, enabling broad recognition despite sequence variability; accordingly, SKT05 protected mice against Venezuelan equine encephalitis virus, chikungunya virus, and Ross River virus challenges. Thus, a single vaccine-elicited antibody can protect in vivo against a broad range of alphaviruses.


Assuntos
Alphavirus , Vírus da Encefalite Equina Venezuelana , Vacinas Virais , Animais , Camundongos , Vírus da Encefalite Equina Venezuelana/genética , Anticorpos Antivirais , Macaca
3.
Protein Sci ; 32(8): e4709, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37347539

RESUMO

We recently converted the GAF domain of NpR3784 cyanobacteriochrome into near-infrared (NIR) fluorescent proteins (FPs). Unlike cyanobacterichrome, which incorporates phycocyanobilin tetrapyrrole, engineered NIR FPs bind biliverdin abundant in mammalian cells, thus being the smallest scaffold for it. Here, we determined the crystal structure of the brightest blue-shifted protein of the series, miRFP670nano3, at 1.8 Å resolution, characterized its chromophore environment and explained the molecular basis of its spectral properties. Using the determined structure, we have rationally designed a red-shifted NIR FP, termed miRFP704nano, with excitation at 680 nm and emission at 704 nm. miRFP704nano exhibits a small size of 17 kDa, enhanced molecular brightness, photostability and pH-stability. miRFP704nano performs well in various protein fusions in live mammalian cells and should become a versatile genetically-encoded NIR probe for multiplexed imaging across spatial scales in different modalities.


Assuntos
Proteínas de Bactérias , Fitocromo , Animais , Proteínas Luminescentes/química , Proteínas de Bactérias/química , Biliverdina/metabolismo , Fitocromo/química , Fitocromo/metabolismo , Mamíferos
4.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047378

RESUMO

The rapid development of new microscopy techniques for cell biology has exposed the need for genetically encoded fluorescent tags with special properties. Fluorescent biomarkers of the same color and spectral range and different fluorescent lifetimes (FLs) became useful for fluorescent lifetime image microscopy (FLIM). One such tag, the green fluorescent protein BrUSLEE (Bright Ultimately Short Lifetime Enhanced Emitter), having an extremely short subnanosecond component of fluorescence lifetime (FL~0.66 ns) and exceptional fluorescence brightness, was designed for FLIM experiments. Here, we present the X-ray structure and discuss the structure-functional relations of BrUSLEE. Its development from the EGFP (enhanced green fluorescent proteins) precursor (FL~2.83 ns) resulted in a change of the chromophore microenvironment due to a significant alteration in the side chain conformations. To get further insight into molecular details explaining the observed differences in the photophysical properties of these proteins, we studied their structural, dynamic, and electric properties by all-atom molecular-dynamics simulations in an aqueous solution. It has been shown that compared to BrUSLEE, the mobility of the chromophore in the EGFP is noticeably limited by nonbonded interactions (mainly H-bonds) with the neighboring residues.


Assuntos
Corantes , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos
6.
Nat Methods ; 20(1): 70-74, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456785

RESUMO

Applying rational design, we developed 17 kDa cyanobacteriochrome-based near-infrared (NIR-I) fluorescent protein, miRFP718nano. miRFP718nano efficiently binds endogenous biliverdin chromophore and brightly fluoresces in mammalian cells and tissues. miRFP718nano has maximal emission at 718 nm and an emission tail in the short-wave infrared (SWIR) region, allowing deep-penetrating off-peak fluorescence imaging in vivo. The miRFP718nano structure reveals the molecular basis of its red shift. We demonstrate superiority of miRFP718nano-enabled SWIR imaging over NIR-I imaging of microbes in the mouse digestive tract, mammalian cells injected into the mouse mammary gland and NF-kB activity in a mouse model of liver inflammation.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Camundongos , Animais , Corantes Fluorescentes/química , Mamíferos
7.
Nat Methods ; 19(6): 740-750, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35606446

RESUMO

Small near-infrared (NIR) fluorescent proteins (FPs) are much needed as protein tags for imaging applications. We developed a 17 kDa NIR FP, called miRFP670nano3, which brightly fluoresces in mammalian cells and enables deep-brain imaging. By exploring miRFP670nano3 as an internal tag, we engineered 32 kDa NIR fluorescent nanobodies, termed NIR-Fbs, whose stability and fluorescence strongly depend on the presence of specific intracellular antigens. NIR-Fbs allowed background-free visualization of endogenous proteins, detection of viral antigens, labeling of cells expressing target molecules and identification of double-positive cell populations with bispecific NIR-Fbs against two antigens. Applying NIR-Fbs as destabilizing fusion partners, we developed molecular tools for directed degradation of targeted proteins, controllable protein expression and modulation of enzymatic activities. Altogether, NIR-Fbs enable the detection and manipulation of a variety of cellular processes based on the intracellular protein profile.


Assuntos
Anticorpos de Domínio Único , Animais , Corantes Fluorescentes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mamíferos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
8.
Protein Sci ; 31(3): 688-700, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936154

RESUMO

We describe an engineered violet fluorescent protein from the lancelet Branchiostoma floridae (bfVFP). This is the first example of a GFP-like fluorescent protein with a stable fluorescent chromophore lacking an imidazolinone ring; instead, it consists of oxidized tyrosine 68 flanked by glycine 67 and alanine 69. bfVFP contains the simplest chromophore reported in fluorescent proteins and was generated from the yellow protein lanFP10A2 by two synergetic mutations, S148H and C166I. The chromophore structure was confirmed crystallographically and by high-resolution mass spectrometry. The photophysical characteristics of bfVFP (323/430 nm, quantum yield 0.33, and Ec 14,300 M-1  cm-1 ) make it potentially useful for multicolor experiments to expand the excitation range of available FP biomarkers and Förster resonance energy transfer with blue and cyan fluorescent protein acceptors.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Tirosina , Alanina , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Mutação , Tirosina/química
9.
Comput Struct Biotechnol J ; 19: 2950-2959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136094

RESUMO

For the whole GFP family, a few cases, when a single mutation in the chromophore environment strongly inhibits maturation, were described. Here we study EYFP-F165G - a variant of the enhanced yellow fluorescent protein - obtained by a single F165G replacement, and demonstrated multiple fluorescent states represented by the minor emission peaks in blue and yellow ranges (~470 and ~530 nm), and the major peak at ~330 nm. The latter has been assigned to tryptophan fluorescence, quenched due to excitation energy transfer to the mature chromophore in the parental EYFP protein. EYFP-F165G crystal structure revealed two general independent routes of post-translational chemistry, resulting in two main states of the polypeptide chain with the intact chromophore forming triad (~85%) and mature chromophore (~15%). Our experiments thus highlighted important stereochemical role of the 165th position strongly affecting spectral characteristics of the protein. On the basis of the determined EYFP-F165G three-dimensional structure, new variants with ~ 2-fold improved brightness were engineered.

10.
ACS Chem Biol ; 15(9): 2456-2465, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32809793

RESUMO

Super-resolution fluorescent imaging in living cells remains technically challenging, largely due to the photodecomposition of fluorescent tags. The recently suggested protein-PAINT is the only super-resolution technique available for prolonged imaging of proteins in living cells. It is realized with complexes of fluorogen-activating proteins, expressed as fusions, and solvatochromic synthetic dyes. Once photobleached, the dye in the complex is replaced with a fresh fluorogen available in the sample. With suitable kinetics, this replacement creates fluorescence blinking required for attaining super-resolution and overcomes photobleaching associated with the loss of an irreplaceable fluorophore. Here we report on the rational design of two protein-PAINT tags based on the 1.58 Å crystal structure of the DiB1:M739 complex, an improved green-emitting DiB3/F74V:M739 and a new orange-emitting DiB3/F53L:M739. They outperform previously reported DiB-based tags to become best in class biomarkers for protein-PAINT. The new tags advance protein-PAINT from the proof-of-concept to a reliable tool suitable for prolonged super-resolution imaging of intracellular proteins in fixed and living cells and two-color PAINT-like nanoscopy with a single fluorogen.


Assuntos
Compostos de Boro/metabolismo , Corantes Fluorescentes/metabolismo , Queratinas/metabolismo , Lipocalinas/metabolismo , Vimentina/metabolismo , Sequência de Aminoácidos , Compostos de Boro/química , Fluorescência , Corantes Fluorescentes/química , Células HEK293 , Células HeLa , Humanos , Lipocalinas/genética , Microscopia de Fluorescência/métodos , Mutação , Ligação Proteica
11.
J Mol Biol ; 432(13): 3749-3760, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32302608

RESUMO

Optically controlled receptor tyrosine kinases (opto-RTKs) allow regulation of RTK signaling using light. Until recently, the majority of opto-RTKs were activated with blue-green light. Fusing a photosensory core module of Deinococcus radiodurans bacterial phytochrome (DrBphP-PCM) to the kinase domains of neurotrophin receptors resulted in opto-RTKs controlled with light above 650 nm. To expand this engineering approach to RTKs of other families, here we combined the DrBpP-PCM with the cytoplasmic domains of EGFR and FGFR1. The resultant Dr-EGFR and Dr-FGFR1 opto-RTKs are rapidly activated with near-infrared and inactivated with far-red light. The opto-RTKs efficiently trigger ERK1/2, PI3K/Akt, and PLCγ signaling. Absence of spectral crosstalk between the opto-RTKs and green fluorescent protein-based biosensors enables simultaneous Dr-FGFR1 activation and detection of calcium transients. Action mechanism of the DrBphP-PCM-based opto-RTKs is considered using the available RTK structures. DrBphP-PCM represents a versatile scaffold for engineering of opto-RTKs that are reversibly regulated with far-red and near-infrared light.


Assuntos
Fitocromo/ultraestrutura , Receptores Proteína Tirosina Quinases/ultraestrutura , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Técnicas Biossensoriais , Deinococcus/química , Deinococcus/genética , Proteínas de Fluorescência Verde/química , Células HeLa , Humanos , Luz , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Fosfatidilinositol 3-Quinases/genética , Fitocromo/química , Fitocromo/genética , Conformação Proteica/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptores de Fator de Crescimento Neural/química , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais/efeitos da radiação
12.
Int J Biol Macromol ; 155: 551-559, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32243936

RESUMO

The crystal structure of monomeric red fluorescent protein FusionRed (λex/λem 580/608 mn) has been determined at 1.09 Å resolution and revealed two alternative routes of post-translational chemistry, resulting in distinctly different products. The refinement occupancies suggest the 60:40 ratio of the mature Met63-Tyr64-Gly65 chromophore and uncyclized chromophore-forming tripeptide with the protein backbone cleaved between Met63 and the preceding Phe62 and oxidized Cα-Cß bond of Tyr64. We analyzed the structures of FusionRed and several related red fluorescent proteins, identified structural elements causing hydrolysis of the peptide bond, and verified their impact by single point mutagenesis. These findings advance the understanding of the post-translational chemistry of GFP-like fluorescent proteins beyond the canonical cyclization-dehydration-oxidation mechanism. They also show that impaired cyclization does not prevent chromophore-forming tripeptide from further transformations enabled by the same set of catalytic residues. Our mutagenesis efforts resulted in inhibition of the peptide backbone cleavage, and a FusionRed variant with ~30% improved effective brightness.


Assuntos
Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas Luminescentes/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Homologia de Sequência , Proteína Vermelha Fluorescente
13.
J Mol Biol ; 431(7): 1397-1408, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30797856

RESUMO

GFP-like proteins from lancelets (lanFPs) is a new and least studied group that already generated several outstanding biomarkers (mNeonGreen is the brightest FP to date) and has some unique features. Here, we report the study of four homologous lanFPs with GYG and GYA chromophores. Until recently, it was accepted that the third chromophore-forming residue in GFP-like proteins should be glycine, and efforts to replace it were in vain. Now, we have the first structure of a fluorescent protein with a successfully matured chromophore that has alanine as the third chromophore-forming residue. Consideration of the protein structures revealed two alternative routes of posttranslational transformation, resulting in either chromophore maturation or hydrolysis of GYG/GYA tripeptide. Both transformations are catalyzed by the same set of catalytic residues, Arg88 and Glu35-Wat-Glu211 cluster, whereas the residues in positions 62 and 102 shift the equilibrium between chromophore maturation and hydrolysis.


Assuntos
Alanina/química , Proteínas de Fluorescência Verde/química , Anfioxos/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Glicina , Proteínas de Fluorescência Verde/genética , Anfioxos/química , Modelos Moleculares , Mutagênese , Mutação , Conformação Proteica , Análise de Sequência de Proteína
14.
Nat Commun ; 10(1): 279, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655515

RESUMO

From a single domain of cyanobacteriochrome (CBCR) we developed a near-infrared (NIR) fluorescent protein (FP), termed miRFP670nano, with excitation at 645 nm and emission at 670 nm. This is the first CBCR-derived NIR FP evolved to efficiently bind endogenous biliverdin chromophore and brightly fluoresce in mammalian cells. miRFP670nano is a monomer with molecular weight of 17 kDa that is 2-fold smaller than bacterial phytochrome (BphP)-based NIR FPs and 1.6-fold smaller than GFP-like FPs. Crystal structure of the CBCR-based NIR FP with biliverdin reveals a molecular basis of its spectral and biochemical properties. Unlike BphP-derived NIR FPs, miRFP670nano is highly stable to denaturation and degradation and can be used as an internal protein tag. miRFP670nano is an effective FRET donor for red-shifted NIR FPs, enabling engineering NIR FRET biosensors spectrally compatible with GFP-like FPs and blue-green optogenetic tools. miRFP670nano unlocks a new source of diverse CBCR templates for NIR FPs.


Assuntos
Proteínas de Bactérias/química , Técnicas Biossensoriais/métodos , Cianobactérias/química , Proteínas Luminescentes/química , Fotorreceptores Microbianos/química , Células 3T3 , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biliverdina/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Evolução Molecular Direcionada/métodos , Feminino , Fluorescência , Células HeLa , Humanos , Microscopia Intravital/métodos , Proteínas Luminescentes/genética , Proteínas Luminescentes/isolamento & purificação , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , Mutagênese , Neurônios , Optogenética/métodos , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/isolamento & purificação , Fotorreceptores Microbianos/metabolismo , Cultura Primária de Células , Domínios Proteicos/genética , Engenharia de Proteínas , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos
15.
Pest Manag Sci ; 74(12): 2761-2772, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29737039

RESUMO

BACKGROUND: The pesticidal properties of many Kunitz-type inhibitors have been reported previously; however, the mechanism of action is not well established. In this study, the activity of alocasin against Aedes aegypti is demonstrated and the structure-activity relationship of this Kunitz-type inhibitor is explained through X-ray structure analyses. RESULTS: Alocasin was purified from mature rhizomes of Alocasia as a single polypeptide chain of ∼ 20 kDa. The structure at 2.5 Å resolution revealed a Kunitz-type fold, but variation in the loop regions makes this structure unique; one loop with a single disulfide bridge is replaced by a long loop with two bridges. Alignment of homologous sequences revealed that this long loop contains a conserved Arg residue and modeling studies showed interaction with the catalytic Ser residue of trypsin-like enzymes. The anti-Aedes aegypti activity of alocasin is examined and discussed in detail. The in vitro activity of alocasin against midgut proteases of Aedes aegypti showed profound inhibition. Further, morphological changes in larvae upon treatment with alocasin revealed its activity against Ae. aegypti. Docking studies of alocasin with trypsin (5G1), a midgut protease involved in the development cycle and blood meal digestion, illustrated its insecticidal activity. CONCLUSION: The three-dimensional structure of alocasin was determined and its structure-function relationship established for its anti Ae. aegypti activity. © 2018 Society of Chemical Industry.


Assuntos
Aedes/efeitos dos fármacos , Aedes/enzimologia , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Cinética , Modelos Moleculares , Conformação Proteica , Proteólise , Relação Estrutura-Atividade , Termodinâmica
16.
Chem Sci ; 8(6): 4546-4557, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28936332

RESUMO

Brighter near-infrared (NIR) fluorescent proteins (FPs) are required for multicolor microscopy and deep-tissue imaging. Here, we present structural and biochemical analyses of three monomeric, spectrally distinct phytochrome-based NIR FPs, termed miRFPs. The miRFPs are closely related and differ by only a few amino acids, which define their molecular brightness, brightness in mammalian cells, and spectral properties. We have identified the residues responsible for the spectral red-shift, revealed a new chromophore bound simultaneously to two cysteine residues in the PAS and GAF domains in blue-shifted NIR FPs, and uncovered the importance of amino acid residues in the N-terminus of NIR FPs for their molecular and cellular brightness. The novel chromophore covalently links the N-terminus of NIR FPs with their C-terminal GAF domain, forming a topologically closed knot in the structure, and also contributes to the increased brightness. Based on our studies, we suggest a strategy to develop spectrally distinct NIR FPs with enhanced brightness.

17.
Acta Crystallogr D Struct Biol ; 72(Pt 8): 922-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27487823

RESUMO

The fluorescent protein from Dendronephthya sp. (DendFP) is a member of the Kaede-like group of photoconvertible fluorescent proteins with a His62-Tyr63-Gly64 chromophore-forming sequence. Upon irradiation with UV and blue light, the fluorescence of DendFP irreversibly changes from green (506 nm) to red (578 nm). The photoconversion is accompanied by cleavage of the peptide backbone at the C(α)-N bond of His62 and the formation of a terminal carboxamide group at the preceding Leu61. The resulting double C(α)=C(ß) bond in His62 extends the conjugation of the chromophore π system to include imidazole, providing the red fluorescence. Here, the three-dimensional structures of native green and photoconverted red forms of DendFP determined at 1.81 and 2.14 Šresolution, respectively, are reported. This is the first structure of photoconverted red DendFP to be reported to date. The structure-based mutagenesis of DendFP revealed an important role of positions 142 and 193: replacement of the original Ser142 and His193 caused a moderate red shift in the fluorescence and a considerable increase in the photoconversion rate. It was demonstrated that hydrogen bonding of the chromophore to the Gln116 and Ser105 cluster is crucial for variation of the photoconversion rate. The single replacement Gln116Asn disrupts the hydrogen bonding of Gln116 to the chromophore, resulting in a 30-fold decrease in the photoconversion rate, which was partially restored by a further Ser105Asn replacement.


Assuntos
Antozoários/química , Proteínas Luminescentes/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Fluorescência , Luz , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência , Raios Ultravioleta
18.
PLoS One ; 10(12): e0145740, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26699366

RESUMO

Phototoxic fluorescent proteins represent a sparse group of genetically encoded photosensitizers that could be used for precise light-induced inactivation of target proteins, DNA damage, and cell killing. Only two such GFP-based fluorescent proteins (FPs), KillerRed and its monomeric variant SuperNova, were described up to date. Here, we present a crystallographic study of their two orange successors, dimeric KillerOrange and monomeric mKillerOrange, at 1.81 and 1.57 Å resolution, respectively. They are the first orange-emitting protein photosensitizers with a tryptophan-based chromophore (Gln65-Trp66-Gly67). Same as their red progenitors, both orange photosensitizers have a water-filled channel connecting the chromophore to the ß-barrel exterior and enabling transport of ROS. In both proteins, Trp66 of the chromophore adopts an unusual trans-cis conformation stabilized by H-bond with the nearby Gln159. This trans-cis conformation along with the water channel was shown to be a key structural feature providing bright orange emission and phototoxicity of both examined orange photosensitizers.


Assuntos
Proteínas Luminescentes/química , Fármacos Fotossensibilizantes/química , Triptofano/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Cristalografia por Raios X , Proteínas Luminescentes/genética , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutagênese , Mutação/genética , Processos Fotoquímicos , Conformação Proteica , Homologia de Sequência de Aminoácidos , Triptofano/genética
19.
Chem Biol ; 22(11): 1540-1551, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26590639

RESUMO

Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are the probes of choice for deep-tissue imaging. Detection of several processes requires spectrally distinct NIR FPs. We developed an NIR FP, BphP1-FP, which has the most blue-shifted spectra and the highest fluorescence quantum yield among BphP-derived FPs. We found that these properties result from the binding of the biliverdin chromophore to a cysteine residue in the GAF domain, unlike natural BphPs and other BphP-based FPs. To elucidate the molecular basis of the spectral shift, we applied biochemical, structural and mass spectrometry analyses and revealed the formation of unique chromophore species. Mutagenesis of NIR FPs of different origins indicated that the mechanism of the spectral shift is general and can be used to design multicolor NIR FPs from other BphPs. We applied pairs of spectrally distinct point cysteine mutants to multicolor cell labeling and demonstrated that they perform well in model deep-tissue imaging.


Assuntos
Proteínas de Bactérias/química , Proteínas Luminescentes/química , Sequência de Aminoácidos , Animais , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/química , Cisteína/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese , Fitocromo/química , Fitocromo/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Rodopseudomonas/metabolismo , Alinhamento de Sequência , Espectroscopia de Luz Próxima ao Infravermelho
20.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1699-707, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26249350

RESUMO

A green-emitting fluorescent variant, NowGFP, with a tryptophan-based chromophore (Thr65-Trp66-Gly67) was recently developed from the cyan mCerulean by introducing 18 point mutations. NowGFP is characterized by bright green fluorescence at physiological and higher pH and by weak cyan fluorescence at low pH. Illumination with blue light induces irreversible photoconversion of NowGFP from a green-emitting to a cyan-emitting form. Here, the X-ray structures of intact NowGFP at pH 9.0 and pH 4.8 and of its photoconverted variant, NowGFP_conv, are reported at 1.35, 1.18 and 2.5 Šresolution, respectively. The structure of NowGFP at pH 9.0 suggests the anionic state of Trp66 of the chromophore to be the primary cause of its green fluorescence. At both examined pH values Trp66 predominantly adopted a cis conformation; only ∼ 20% of the trans conformation was observed at pH 4.8. It was shown that Lys61, which adopts two distinct pH-dependent conformations, is a key residue playing a central role in chromophore ionization. At high pH the side chain of Lys61 forms two hydrogen bonds, one to the indole N atom of Trp66 and the other to the carboxyl group of the catalytic Glu222, enabling an indirect noncovalent connection between them that in turn promotes Trp66 deprotonation. At low pH, the side chain of Lys61 is directed away from Trp66 and forms a hydrogen bond to Gln207. It has been shown that photoconversion of NowGFP is accompanied by decomposition of Lys61, with a predominant cleavage of its side chain at the C(γ)-C(δ) bond. Lys61, Glu222, Thr203 and Ser205 form a local hydrogen-bond network connected to the indole ring of the chromophore Trp66; mutation of any of these residues dramatically affects the spectral properties of NowGFP. On the other hand, an Ala150Val replacement in the vicinity of the chromophore indole ring resulted in a new advanced variant with a 2.5-fold improved photostability.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Triptofano/química , Ânions/química , Ânions/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação Puntual , Conformação Proteica , Espectrometria de Fluorescência , Triptofano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA