Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Am J Physiol Renal Physiol ; 326(6): F1032-F1038, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634136

RESUMO

The gut microbiome regulates many important host physiological processes associated with cardiovascular health and disease; however, the impact of the gut microbiome on aldosterone is unclear. Investigating whether gut microbiota regulate aldosterone can offer novel insights into how the microbiome affects blood pressure. In this study, we aimed to determine whether gut microbiota regulate host aldosterone. We used enzyme-linked immunosorbent assays (ELISAs) to assess plasma aldosterone and plasma renin activity (PRA) in female and male mice in which gut microbiota are intact, suppressed, or absent. In addition, we examined urinary aldosterone. Our findings demonstrated that when the gut microbiota is suppressed following antibiotic treatment, there is an increase in plasma and urinary aldosterone in both female and male mice. In contrast, an increase in PRA is seen only in males. We also found that when gut microbiota are absent (germ-free mice), plasma aldosterone is significantly increased compared with conventional animals (in both females and males), but PRA is not. Understanding how gut microbiota influence aldosterone levels could provide valuable insights into the development and treatment of hypertension and/or primary aldosteronism. This knowledge may open new avenues for therapeutic interventions, such as probiotics or dietary modifications to help regulate blood pressure via microbiota-based changes to aldosterone.NEW & NOTEWORTHY We explore the role of the gut microbiome in regulating aldosterone, a hormone closely linked to blood pressure and cardiovascular disease. Despite the recognized importance of the gut microbiome in host physiology, the relationship with circulating aldosterone remains largely unexplored. We demonstrate that suppression of gut microbiota leads to increased levels of plasma and urinary aldosterone. These findings underscore the potential of the gut microbiota to influence aldosterone regulation, suggesting new possibilities for treating hypertension.


Assuntos
Aldosterona , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Renina , Animais , Aldosterona/sangue , Aldosterona/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Masculino , Renina/sangue , Renina/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Vida Livre de Germes , Camundongos , Antibacterianos/farmacologia , Hipertensão/microbiologia , Hipertensão/metabolismo
3.
Sci Adv ; 10(12): eadk1487, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507492

RESUMO

Sex differences in blood pressure are well-established, with premenopausal women having lower blood pressure than men by ~10 millimeters of mercury; however, the underlying mechanisms are not fully understood. We report here that sex differences in blood pressure are absent in olfactory receptor 558 knockout (KO) mice. Olfr558 localizes to renin-positive cells in the kidney and to vascular smooth muscle cells. Female KOs exhibit increased blood pressure and increased pulse wave velocity. In contrast, male KO mice have decreased renin expression and activity, altered vascular reactivity, and decreased diastolic pressure. A rare OR51E1 (human ortholog) missense variant has a statistically significant sex interaction effect with diastolic blood pressure, increasing diastolic blood pressure in women but decreasing it in men. In summary, our findings demonstrate an evolutionarily conserved role for OLFR558/OR51E1 to mediate sex differences in blood pressure.


Assuntos
Receptores Odorantes , Renina , Camundongos , Animais , Feminino , Masculino , Humanos , Pressão Sanguínea/fisiologia , Receptores Odorantes/genética , Caracteres Sexuais , Análise de Onda de Pulso
5.
Am J Physiol Renal Physiol ; 324(6): F511-F520, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37053490

RESUMO

The gut microbiome impacts host gene expression not only in the colon but also at distal sites including the liver, white adipose tissue, and spleen. The gut microbiome also influences the kidney and is associated with renal diseases and pathologies; however, a role for the gut microbiome to modulate renal gene expression has not been examined. To determine if microbes modulate renal gene expression, we used whole organ RNA sequencing to compare gene expression in C57Bl/6 mice that were germ free (lacking gut microbiota) versus conventionalized (gut microbiota reintroduced using an oral gavage of a fecal slurry composed of mixed stool). 16S sequencing showed that male and female mice were similarly conventionalized, although Verrucomicrobia was higher in male mice. We found that renal gene expression was differentially regulated in the presence vs. absence of microbiota and that these changes were largely sex specific. Although microbes also influenced gene expression in the liver and large intestine, most differentially expressed genes (DEGs) in the kidney were not similarly regulated in the liver or large intestine. This demonstrates that the influence of the gut microbiota on gene expression is tissue specific. However, a minority of genes (n = 4 in males and n = 6 in females) were similarly regulated in all three tissues examined, including genes associated with circadian rhythm (period 1 in males and period 2 in females) and metal binding (metallothionein 1 and metallothionein 2 in both males and females). Finally, using a previously published single-cell RNA-sequencing dataset, we assigned a subset of DEGs to specific kidney cell types, revealing clustering of DEGs by cell type and/or sex.NEW & NOTEWORTHY It is unknown whether the microbiome influences host gene expression in the kidney. Here, we utilized an unbiased, bulk RNA-sequencing approach to compare gene expression in the kidneys of male and female mice with or without gut microbiota. This report demonstrates that renal gene expression is modulated by the microbiome in a sex- and tissue-specific manner.


Assuntos
Microbioma Gastrointestinal , Masculino , Feminino , Animais , Camundongos , Fezes , Colo , Rim , Expressão Gênica
6.
Kidney Int ; 104(3): 470-491, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37011727

RESUMO

Targeting gut microbiota has shown promise to prevent experimental acute kidney injury (AKI). However, this has not been studied in relation to accelerating recovery and preventing fibrosis. Here, we found that modifying gut microbiota with an antibiotic administered after severe ischemic kidney injury in mice, particularly with amoxicillin, accelerated recovery. These indices of recovery included increased glomerular filtration rate, diminution of kidney fibrosis, and reduction of kidney profibrotic gene expression. Amoxicillin was found to increase stool Alistipes, Odoribacter and Stomatobaculum species while significantly depleting Holdemanella and Anaeroplasma. Specifically, amoxicillin treatment reduced kidney CD4+T cells, interleukin (IL)-17 +CD4+T cells, and tumor necrosis factor-α double negative T cells while it increased CD8+T cells and PD1+CD8+T cells. Amoxicillin also increased gut lamina propria CD4+T cells while decreasing CD8+T and IL-17+CD4+T cells. Amoxicillin did not accelerate repair in germ-free or CD8-deficient mice, demonstrating microbiome and CD8+T lymphocytes dependence for amoxicillin protective effects. However, amoxicillin remained effective in CD4-deficient mice. Fecal microbiota transplantation from amoxicillin-treated to germ-free mice reduced kidney fibrosis and increased Foxp3+CD8+T cells. Amoxicillin pre-treatment protected mice against kidney bilateral ischemia reperfusion injury but not cisplatin-induced AKI. Thus, modification of gut bacteria with amoxicillin after severe ischemic AKI is a promising novel therapeutic approach to accelerate recovery of kidney function and mitigate the progression of AKI to chronic kidney disease.


Assuntos
Injúria Renal Aguda , Microbiota , Traumatismo por Reperfusão , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Rim/patologia , Traumatismo por Reperfusão/patologia , Isquemia , Fibrose , Amoxicilina/efeitos adversos
8.
Am J Physiol Renal Physiol ; 324(3): F267-F273, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603001

RESUMO

The diverse functions of each nephron segment rely on the coordinated action of specialized cell populations that are uniquely defined by their transcriptional profile. In the collecting duct, there are two critical and distinct cell populations: principal cells and intercalated cells. Principal cells play key roles in the regulation of water, Na+, and K+, whereas intercalated cells are best known for their role in acid-base homeostasis. Currently, there are no in vitro systems that recapitulate the heterogeneity of the collecting ducts, which limits high-throughput and replicate investigations of genetic and physiological phenomena. Here, we demonstrated that the transcription factor Foxi1 is sufficient to alter the transcriptional identity of M-1 cells, a murine cortical collecting duct cell line. Specifically, overexpression of Foxi1 induces the expression of intercalated cell transcripts including Gpr116, Atp6v1b1, Atp6v1g3, Atp6v0d2, Slc4a9, and Slc26a4. These data indicate that overexpression of Foxi1 differentiates M-1 cells toward a non-A, non-B type intercalated cell phenotype and may provide a novel in vitro tool to study transcriptional regulation and physiological function of the renal collecting duct.NEW & NOTEWORTHY Transfection of M-1 cells with the transcription factor Foxi1 generates cells that express V-ATPase and Gpr116 as well as other genes associated with renal intercalated cells. This straightforward and novel in vitro system could be used to study processes including transcriptional regulation and cell specification and differentiation in renal intercalated cells.


Assuntos
Fatores de Transcrição Forkhead , Receptores Acoplados a Proteínas G , ATPases Vacuolares Próton-Translocadoras , Animais , Camundongos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Diferenciação Celular , Antiportadores de Cloreto-Bicarbonato/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Rim/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
9.
Hypertension ; 79(10): 2127-2137, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912645

RESUMO

The gut microbiome influences host physiology and pathophysiology through several pathways, one of which is microbial production of chemical metabolites which interact with host signaling pathways. Short-chain fatty acids (SCFAs) are a class of gut microbial metabolites known to activate multiple signaling pathways in the host. Growing evidence indicates that the gut microbiome is linked to blood pressure, that SCFAs modulate blood pressure regulation, and that delivery of exogenous SCFAs lowers blood pressure. Given that hypertension is a key risk factor for cardiovascular disease, the examination of novel contributors to blood pressure regulation has the potential to lead to novel approaches or treatments. Thus, this review will discuss SCFAs with a focus on their host G protein-coupled receptors including GPR41 (G protein-coupled receptor 41), GPR43, and GPR109A, as well as OLFR78 (olfactory receptor 78) and OLFR558. This includes a discussion of the ligand profiles, G protein coupling, and tissue distribution of each receptor. We will also review phenotypes relevant to blood pressure regulation which have been reported to date for Gpr41, Gpr43, Gpr109a, and Olfr78 knockout mice. In addition, we will consider how SCFA signaling influences physiology at baseline, and, how SCFA signaling may contribute to blood pressure regulation in settings of hypertension. In sum, this review will integrate current knowledge regarding how SCFAs and their receptors regulate blood pressure.


Assuntos
Distinções e Prêmios , Hipertensão , Receptores Odorantes , Animais , Pressão Sanguínea/fisiologia , Ácidos Graxos Voláteis/metabolismo , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo
10.
Am J Physiol Cell Physiol ; 322(6): C1279-C1288, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35544696

RESUMO

In this study, we elucidate factors that regulate the trafficking and activity of a well-conserved olfactory receptor (OR), olfactory receptor 558 (Olfr558), and its human ortholog olfactory receptor 51E1 (OR51E1). Results indicate that butyrate activates Olfr558/OR51E1 leading to the production of cAMP, and evokes Ca2+ influx. We also find olfactory G protein (Golf) increases cAMP production induced by Olfr558/OR51E1 activation but does not affect trafficking. Given the 93% sequence identity between OR51E1 and Olfr558, it is surprising to note that OR51E1 has significantly more surface expression yet similar total protein expression. We find that replacing the Olfr558 N-terminus with that of OR51E1 significantly increases trafficking; in contrast, there is no change in surface expression conferred by the OR51E1 TM2, TM3, or TM4 domains. A previous analysis of human OR51E1 single nucleotide polymorphisms (SNPs) identified an A156T mutant primarily found in South Asia as the most abundant (albeit still rare). We find that the OR51E1 A156T mutant has reduced surface expression and cAMP production without a change in total protein expression. In sum, this study of a well-conserved olfactory receptor identifies both protein regions and specific amino acid residues that play key roles in protein trafficking and also elucidates common effects of Golf on the regulation of both the human and murine OR.


Assuntos
Receptores Odorantes , Aminoácidos/metabolismo , Animais , Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos , Transporte Proteico , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/genética
11.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362479

RESUMO

Next-generation sequencing (NGS) technology has advanced our understanding of the human microbiome by allowing for the discovery and characterization of unculturable microbes with prediction of their function. Key NGS methods include 16S rRNA gene sequencing, shotgun metagenomic sequencing, and RNA sequencing. The choice of which NGS methodology to pursue for a given purpose is often unclear for clinicians and researchers. In this Review, we describe the fundamentals of NGS, with a focus on 16S rRNA and shotgun metagenomic sequencing. We also discuss pros and cons of each methodology as well as important concepts in data variability, study design, and clinical metadata collection. We further present examples of how NGS studies of the human microbiome have advanced our understanding of human disease pathophysiology across diverse clinical contexts, including the development of diagnostics and therapeutics. Finally, we share insights as to how NGS might further be integrated into and advance microbiome research and clinical care in the coming years.


Assuntos
Microbiota , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
12.
Nephron ; 146(3): 278-281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34261071

RESUMO

G protein-coupled receptors (GPCRs) are cell surface proteins which play a key role in allowing cells, tissues, and organs to respond to changes in the external environment in order to maintain homeostasis. Despite the fact that GPCRs are known to play key roles in a variety of tissues, there are a large subset of GPCRs that remain poorly studied. In this minireview, we will summarize what is known regarding the "understudied" GPCRs with respect to renal function, and in so doing will highlight the promise represented by studying this gene family.


Assuntos
Rim , Receptores Acoplados a Proteínas G , Homeostase , Humanos , Rim/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
13.
Physiol Rep ; 9(18): e15017, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549531

RESUMO

Olfactory receptor 78 (Olfr78) is a G protein-coupled receptor (GPCR) that is expressed in the juxtaglomerular apparatus (JGA) of the kidney as well as the peripheral vasculature, and is activated by gut microbial metabolites. We previously reported that Olfr78 plays a role in renin secretion in isolated glomeruli, and that Olfr78 knockout (KO) mice have lower plasma renin activity. We also noted that in anesthetized mice, Olfr78KO appeared to be hypotensive. In this study, we used radiotelemetry to determine the role of Olfr78 in chronic blood pressure regulation. We found that the blood pressure of Olfr78KO mice is not significantly different than that of their WT counterparts at baseline, or on high- or low-salt diets. However, Olfr78KO mice have depressed heart rates on high-salt diets. We also report that Olfr78KO mice have lower renin protein levels associated with glomeruli. Finally, we developed a mouse where Olfr78 was selectively knocked out in the JGA, which phenocopied the lower renin association findings. In sum, these experiments suggest that Olfr78 modulates renin, but does not play an active role in blood pressure regulation at baseline, and is more likely activated by high levels of short chain fatty acids or hypotensive events. This study provides important context to our knowledge of Olfr78 in BP regulation.


Assuntos
Pressão Sanguínea , Hipertensão/metabolismo , Receptores Odorantes/metabolismo , Renina/metabolismo , Animais , Feminino , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Odorantes/genética
14.
Physiol Rep ; 9(8): e14840, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33932109

RESUMO

Sensory GPCRs such as olfactory receptors (ORs), taste receptors (TRs), and opsins (OPNs) are now known to play important physiological roles beyond their traditional sensory organs. Here, we systematically investigate the expression of sensory GPCRs in the urinary bladder for the first time. We find that the murine bladder expresses 16 ORs, 7 TRs, and 3 OPNs. We additionally explore the ectopic expression of these GPCRs in tissues beyond the bladder, as well as the localization within the bladder. In future work, understanding the functional roles of these bladder sensory GPCRs may shed light on novel mechanisms which modulate bladder function in health and disease.


Assuntos
Opsinas/metabolismo , Receptores Odorantes/metabolismo , Bexiga Urinária/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Opsinas/genética , Receptores Odorantes/genética
15.
J Pharmacol Exp Ther ; 377(1): 39-50, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414131

RESUMO

Short-chain fatty acids (SCFAs) are metabolites produced almost exclusively by the gut microbiota and are an essential mechanism by which gut microbes influence host physiology. Given that SCFAs induce vasodilation, we hypothesized that they might have additional cardiovascular effects. In this study, novel mechanisms of SCFA action were uncovered by examining the acute effects of SCFAs on cardiovascular physiology in vivo and ex vivo. Acute delivery of SCFAs in conscious radiotelemetry-implanted mice results in a simultaneous decrease in both mean arterial pressure and heart rate (HR). Inhibition of sympathetic tone by the selective ß-1 adrenergic receptor antagonist atenolol blocks the acute drop in HR seen with acetate administration, yet the decrease in mean arterial pressure persists. Treatment with tyramine, an indirect sympathomimetic, also blocks the acetate-induced acute drop in HR. Langendorff preparations show that acetate lowers HR only after long-term exposure and at a smaller magnitude than seen in vivo. Pressure-volume loops after acetate injection show a decrease in load-independent measures of cardiac contractility. Isolated trabecular muscle preparations also show a reduction in force generation upon SCFA treatment, though only at supraphysiological concentrations. These experiments demonstrate a direct cardiac component of the SCFA cardiovascular response. These data show that acetate affects blood pressure and cardiac function through parallel mechanisms and establish a role for SCFAs in modulating sympathetic tone and cardiac contractility, further advancing our understanding of the role of SCFAs in blood pressure regulation. SIGNIFICANCE STATEMENT: Acetate, a short-chain fatty acid, acutely lowers heart rate (HR) as well as mean arterial pressure in vivo in radiotelemetry-implanted mice. Acetate is acting in a sympatholytic manner on HR and exerts negative inotropic effects in vivo. This work has implications for potential short-chain fatty acid therapeutics as well as gut dysbiosis-related disease states.


Assuntos
Acetatos/farmacologia , Pressão Sanguínea , Ácidos Graxos Voláteis/farmacologia , Frequência Cardíaca , Coração/efeitos dos fármacos , Contração Miocárdica , Acetatos/administração & dosagem , Animais , Ácidos Graxos Voláteis/administração & dosagem , Feminino , Coração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia
16.
Am J Clin Nutr ; 113(1): 232-245, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33300030

RESUMO

In November 2019, the NIH held the "Sensory Nutrition and Disease" workshop to challenge multidisciplinary researchers working at the interface of sensory science, food science, psychology, neuroscience, nutrition, and health sciences to explore how chemosensation influences dietary choice and health. This report summarizes deliberations of the workshop, as well as follow-up discussion in the wake of the current pandemic. Three topics were addressed: A) the need to optimize human chemosensory testing and assessment, B) the plasticity of chemosensory systems, and C) the interplay of chemosensory signals, cognitive signals, dietary intake, and metabolism. Several ways to advance sensory nutrition research emerged from the workshop: 1) refining methods to measure chemosensation in large cohort studies and validating measures that reflect perception of complex chemosensations relevant to dietary choice; 2) characterizing interindividual differences in chemosensory function and how they affect ingestive behaviors, health, and disease risk; 3) defining circuit-level organization and function that link and interact with gustatory, olfactory, homeostatic, visceral, and cognitive systems; and 4) discovering new ligands for chemosensory receptors (e.g., those produced by the microbiome) and cataloging cell types expressing these receptors. Several of these priorities were made more urgent by the current pandemic because infection with sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing coronavirus disease of 2019 has direct short- and perhaps long-term effects on flavor perception. There is increasing evidence of functional interactions between the chemosensory and nutritional sciences. Better characterization of this interface is expected to yield insights to promote health, mitigate disease risk, and guide nutrition policy.

17.
Am J Physiol Regul Integr Comp Physiol ; 320(1): R19-R35, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33085906

RESUMO

C1q/TNF-related protein 1 (CTRP1) is an endocrine factor with metabolic, cardiovascular, and renal functions. We previously showed that aged Ctrp1-knockout (KO) mice fed a control low-fat diet develop renal hypertrophy and dysfunction. Since aging and obesity adversely affect various organ systems, we hypothesized that aging, in combination with obesity induced by chronic high-fat feeding, would further exacerbate renal dysfunction in CTRP1-deficient animals. To test this, we fed wild-type and Ctrp1-KO mice a high-fat diet for 8 mo or longer. Contrary to our expectation, no differences were observed in blood pressure, heart function, or vascular stiffness between genotypes. Loss of CTRP1, however, resulted in an approximately twofold renal enlargement (relative to body weight), ∼60% increase in urinary total protein content, and elevated pH, and changes in renal gene expression affecting metabolism, signaling, transcription, cell adhesion, solute and metabolite transport, and inflammation. Assessment of glomerular integrity, the extent of podocyte foot process effacement, as well as renal response to water restriction and salt loading did not reveal significant differences between genotypes. Interestingly, blood platelet, white blood cell, neutrophil, lymphocyte, and eosinophil counts were significantly elevated, whereas mean corpuscular volume and hemoglobin were reduced in Ctrp1-KO mice. Cytokine profiling revealed increased circulating levels of CCL17 and TIMP-1 in KO mice. Compared with our previous study, current data suggest that chronic high-fat feeding affects renal phenotypes differently than similarly aged mice fed a control low-fat diet, highlighting a diet-dependent contribution of CTRP1 deficiency to age-related changes in renal structure and function.


Assuntos
Adipocinas/deficiência , Envelhecimento/metabolismo , Dieta Hiperlipídica/efeitos adversos , Nefropatias/etiologia , Rim/metabolismo , Obesidade/etiologia , Adipocinas/genética , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Quimiocina CCL17/sangue , Feminino , Regulação da Expressão Gênica , Genótipo , Hipertrofia , Rim/ultraestrutura , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Inibidor Tecidual de Metaloproteinase-1/sangue
18.
Sci Adv ; 6(44)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115740

RESUMO

Sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) is one of the most abundant cell membrane proteins and is essential for eukaryotes. Endogenous negative regulators have long been postulated to play an important role in regulating the activity and stability of Na+/K+-ATPase, but characterization of these regulators has been elusive. Mechanisms of regulating Na+/K+-ATPase homeostatic turnover are unknown. Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7), generated by inositol hexakisphosphate kinase 1 (IP6K1), promotes physiological endocytosis and downstream degradation of Na+/K+-ATPase-α1. Deletion of IP6K1 elicits a twofold enrichment of Na+/K+-ATPase-α1 in plasma membranes of multiple tissues and cell types. Using a suite of synthetic chemical biology tools, we found that 5-InsP7 binds the RhoGAP domain of phosphatidylinositol 3-kinase (PI3K) p85α to disinhibit its interaction with Na+/K+-ATPase-α1. This recruits adaptor protein 2 (AP2) and triggers the clathrin-mediated endocytosis of Na+/K+-ATPase-α1. Our study identifies 5-InsP7 as an endogenous negative regulator of Na+/K+-ATPase-α1.

19.
Proc Natl Acad Sci U S A ; 117(45): 28485-28495, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097666

RESUMO

The recent discovery of sensory (tastant and odorant) G protein-coupled receptors on the smooth muscle of human bronchi suggests unappreciated therapeutic targets in the management of obstructive lung diseases. Here we have characterized the effects of a wide range of volatile odorants on the contractile state of airway smooth muscle (ASM) and uncovered a complex mechanism of odorant-evoked signaling properties that regulate excitation-contraction (E-C) coupling in human ASM cells. Initial studies established multiple odorous molecules capable of increasing intracellular calcium ([Ca2+]i) in ASM cells, some of which were (paradoxically) associated with ASM relaxation. Subsequent studies showed a terpenoid molecule (nerol)-stimulated OR2W3 caused increases in [Ca2+]i and relaxation of ASM cells. Of note, OR2W3-evoked [Ca2+]i mobilization and ASM relaxation required Ca2+ flux through the store-operated calcium entry (SOCE) pathway and accompanied plasma membrane depolarization. This chemosensory odorant receptor response was not mediated by adenylyl cyclase (AC)/cyclic nucleotide-gated (CNG) channels or by protein kinase A (PKA) activity. Instead, ASM olfactory responses to the monoterpene nerol were predominated by the activity of Ca2+-activated chloride channels (TMEM16A), including the cystic fibrosis transmembrane conductance regulator (CFTR) expressed on endo(sarco)plasmic reticulum. These findings demonstrate compartmentalization of Ca2+ signals dictates the odorant receptor OR2W3-induced ASM relaxation and identify a previously unrecognized E-C coupling mechanism that could be exploited in the development of therapeutics to treat obstructive lung diseases.


Assuntos
Anoctamina-1/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/metabolismo , Adenilil Ciclases/metabolismo , Brônquios/metabolismo , Cálcio/metabolismo , Células Cultivadas , Humanos , Pulmão/metabolismo , Contração Muscular/fisiologia , Relaxamento Muscular , Miócitos de Músculo Liso/metabolismo , Receptores Odorantes/genética
20.
Proc Natl Acad Sci U S A ; 117(42): 26470-26481, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33004624

RESUMO

The diversity and near universal expression of G protein-coupled receptors (GPCR) reflects their involvement in most physiological processes. The GPCR superfamily is the largest in the human genome, and GPCRs are common pharmaceutical targets. Therefore, uncovering the function of understudied GPCRs provides a wealth of untapped therapeutic potential. We previously identified an adhesion-class GPCR, Gpr116, as one of the most abundant GPCRs in the kidney. Here, we show that Gpr116 is highly expressed in specialized acid-secreting A-intercalated cells (A-ICs) in the kidney using both imaging and functional studies, and we demonstrate in situ receptor activation using a synthetic agonist peptide unique to Gpr116. Kidney-specific knockout (KO) of Gpr116 caused a significant reduction in urine pH (i.e., acidification) accompanied by an increase in blood pH and a decrease in pCO2 compared to WT littermates. Additionally, immunogold electron microscopy shows a greater accumulation of V-ATPase proton pumps at the apical surface of A-ICs in KO mice compared to controls. Furthermore, pretreatment of split-open collecting ducts with the synthetic agonist peptide significantly inhibits proton flux in ICs. These data suggest a tonic inhibitory role for Gpr116 in the regulation of V-ATPase trafficking and urinary acidification. Thus, the absence of Gpr116 results in a primary excretion of acid in KO mouse urine, leading to mild metabolic alkalosis ("renal tubular alkalosis"). In conclusion, we have uncovered a significant role for Gpr116 in kidney physiology, which may further inform studies in other organ systems that express this GPCR, such as the lung, testes, and small intestine.


Assuntos
Rim/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Fenômenos Bioquímicos , Transporte Biológico , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Feminino , Homeostase , Humanos , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA