Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21591, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062191

RESUMO

Hyperspectral Imaging (HSI) combines microscopy and spectroscopy to assess the spatial distribution of spectroscopically active compounds in objects, and has diverse applications in food quality control, pharmaceutical processes, and waste sorting. However, due to the large size of HSI datasets, it can be challenging to analyze and store them within a reasonable digital infrastructure, especially in waste sorting where speed and data storage resources are limited. Additionally, as with most spectroscopic data, there is significant redundancy, making pixel and variable selection crucial for retaining chemical information. Recent high-tech developments in chemometrics enable automated and evidence-based data reduction, which can substantially enhance the speed and performance of Non-Negative Matrix Factorization (NMF), a widely used algorithm for chemical resolution of HSI data. By recovering the pure contribution maps and spectral profiles of distributed compounds, NMF can provide evidence-based sorting decisions for efficient waste management. To improve the quality and efficiency of data analysis on hyperspectral imaging (HSI) data, we apply a convex-hull method to select essential pixels and wavelengths and remove uninformative and redundant information. This process minimizes computational strain and effectively eliminates highly mixed pixels. By reducing data redundancy, data investigation and analysis become more straightforward, as demonstrated in both simulated and real HSI data for plastic sorting.

2.
Inorg Chem ; 60(18): 13990-14001, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34496217

RESUMO

This study presents the influence of polymorphism on the magnetic properties of Co5TeO8. This compound with a spinel-like structure [Co2]A[Co3Te]BO8 was synthesized into two polymorphs: one disordered within a cubic Fd3̅m structure, where Co2+ and Te6+ ions are randomly distributed on the octahedral B sites [the disordered polymorph can also be presented as an inverse spinel of the formula Co(Co1.5Te0.5)O4] and the other ordered with a cubic P4332 structure where Co2+ and Te6+ ions are ordered on the B sites. The macroscopic magnetic measurements showed that both polymorphs present a ferrimagnetic ordering, below ∼40 K, and a second transition is also observed at 27 K for the ordered polymorph. Neutron powder diffraction data between room temperature and 1.7 K showed as well the presence of short-range magnetic ordered clusters, which appears for both polymorphs below 200 K. At lower temperature, these short-range orders are transformed into long-range ferrimagnetic orders. Below TC = 40 K, the colinear ferrimagnetic structure of the disordered polymorph is described with the I41/am'd' space group. The ordered polymorph undergoes an incommensurate ferrimagnetic spiral spin ordering below TC1 = 45 K, followed by a second magnetic phase transition at TC2 = 27 K. This last transition is associated with the emergence of an additional ferrimagnetic component and an abrupt change in the magnitude of the magnetic propagation vector k = [0, 0, γ] from γ = 0.086 at T = 30 K to γ ≈ 0.14 in the range between 27 and 1.7 K. The magnetic symmetry of the ordered polymorph is described with the P43(00γ)0 magnetic superspace group. We evidenced that the ordering of Co2+/Te6+ on the B sites changes all of the Co-Co and Co-O distances and thus all JAB, JAA, and JBB exchange interactions, between the A and B sites, which are able to stabilize the incommensurate spin modulation in the ordered polymorph.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA