Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nitric Oxide ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880198

RESUMO

BACKGROUND: Inhaled nitric oxide (iNO) showed to improve oxygenation at low doses by reducing intrapulmonary shunt and to display antiviral properties at high doses. To assess the safety and potential benefits, we designed an exploratory clinical trial comparing low-dose with intermittent high-dose iNO to only intermittent high-dose iNO in hypoxemic COVID-19 patients. METHODS: In this single-center interventional non-inferiority randomized trial (ClinicalTrials.gov, NCT04476992), twenty oxygen-dependent COVID-19 patients were randomly assigned to the high-dose (200 ppm for 30 minutes) + continuous low-dose (20 ppm) iNO group (iNO200/20) or the high-dose iNO group (iNO200). Methemoglobinemia (MetHb) assessed 48 hours after iNO initiation was the primary endpoint. Reverse-transcription polymerase chain reaction for SARS-CoV-2, inflammatory markers during hospitalization, and heart ultrasounds during the iNO200 treatments were evaluated. RESULTS: MetHb difference between iNO groups remained within the non-inferiority limit of 3%, indicating comparable treatments despite being statistically different (p-value<0.01). Both groups presented similar SpO2/FiO2 ratio at 48 hours (iNO200 vs. iNO200/20 341[334-356] vs. 359 [331-380], respectively, p-value = 0.436). Both groups showed the same time to SARS-CoV-2 negativization, hospital length of stay, and recovery time. iNO-treated patients showed quicker SARS-CoV-2 negativization compared to a similar group of non-iNO patients (HR 2.57, 95%CI 1.04-6.33). During the 228 treatments, iNO200 and iNO200/20 groups were comparable for safety, hemodynamic stability, and respiratory function improvement. CONCLUSIONS: iNO200/20 and iNO200 are equally safe in non-intubated patients with COVID-19-induced respiratory failure with regards to MetHb and NO2. Larger studies should investigate whether iNO200/20 leads to better outcomes compared to non-iNO treated patients.

2.
Biomedicines ; 12(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38672075

RESUMO

Performing cardiac surgery under cardiopulmonary bypass (CPB) and circulatory arrest (CA) provokes the development of complications caused by tissue metabolism, microcirculatory disorders, and endogenous nitric oxide (NO) deficiency. This study aimed to investigate the potential mechanisms for systemic organoprotective effects of exogenous NO during CPB and CA based on the assessment of dynamic changes in glycocalyx degradation markers, deformation properties of erythrocytes, and tissue metabolism in the experiment. A single-center prospective randomized controlled study was conducted on sheep, n = 24, comprising four groups of six in each. In two groups, NO was delivered at a dose of 80 ppm during CPB ("CPB + NO" group) or CPB and CA ("CPB + CA + NO"). In the "CPB" and "CPB + CA" groups, NO supply was not carried out. NO therapy prevented the deterioration of erythrocyte deformability. It was associated with improved tissue metabolism, lower lactate levels, and higher ATP levels in myocardial and lung tissues. The degree of glycocalyx degradation and endothelial dysfunction, assessed by the concentration of heparan sulfate proteoglycan and asymmetric dimethylarginine, did not change when exogenous NO was supplied. Intraoperative delivery of NO provides systemic organoprotection, which results in reducing the damaging effects of CPB on erythrocyte deformability and maintaining normal functioning of tissue metabolism.

3.
Fundam Clin Pharmacol ; 38(3): 489-501, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38311344

RESUMO

BACKGROUND: The high mortality rate of patients with acute myocardial infarction (AMI) remains the most pressing issue of modern cardiology. Over the past 10 years, there has been no significant reduction in mortality among patients with AMI. It is quite obvious that there is an urgent need to develop fundamentally new drugs for the treatment of AMI. Angiotensin 1-7 has some promise in this regard. OBJECTIVE: The objective of this article is analysis of published data on the cardioprotective properties of angiotensin 1-7. METHODS: PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS: Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart. Angiotensin 1-7 can prevent not only ischemic but also reperfusion cardiac injury. The activation of the Mas receptor plays a key role in these effects of angiotensin 1-7. Angiotensin 1-7 alleviates Ca2+ overload of cardiomyocytes and reactive oxygen species production in ischemia/reperfusion (I/R) of the myocardium. It is possible that both effects are involved in angiotensin 1-7-triggered cardiac tolerance to I/R. Furthermore, angiotensin 1-7 inhibits apoptosis of cardiomyocytes and stimulates autophagy of cells. There is also indirect evidence suggesting that angiotensin 1-7 inhibits ferroptosis in cardiomyocytes. Moreover, angiotensin 1-7 possesses anti-inflammatory properties, possibly achieved through NF-kB activity inhibition. Phosphoinositide 3-kinase, Akt, and NO synthase are involved in the infarct-reducing effect of angiotensin 1-7. However, the specific end-effector of the cardioprotective impact of angiotensin 1-7 remains unknown. CONCLUSION: The molecular nature of the end-effector of the infarct-limiting effect of angiotensin 1-7 has not been elucidated. Perhaps, this end-effector is the sarcolemmal KATP channel or the mitochondrial KATP channel.


Assuntos
Angiotensina I , Traumatismo por Reperfusão Miocárdica , Fragmentos de Peptídeos , Transdução de Sinais , Angiotensina I/farmacologia , Fragmentos de Peptídeos/farmacologia , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Animais , Transdução de Sinais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Apoptose/efeitos dos fármacos
4.
Biomedicines ; 11(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37509526

RESUMO

An analysis of published data and the results of our own studies reveal that the activation of a peripheral δ2-opioid receptor (δ2-OR) increases the cardiac tolerance to reperfusion. It has been found that this δ2-OR is localized in cardiomyocytes. Endogenous opioids are not involved in the regulation of cardiac resistance to reperfusion. The infarct-limiting effect of the δ2-OR agonist deltorphin II depends on the activation of several protein kinases, including PKCδ, ERK1/2, PI3K, and PKG. Hypothetical end-effectors of the cardioprotective effect of deltorphin II are the sarcolemmal KATP channels and the MPT pore.

5.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727110

RESUMO

The aim of the experiment was to evaluate the effect of preconditioning based on changes in inspiratory oxygen fraction on endothelial function in the model of ischemia-reperfusion injury of the myocardium in the condition of cardiopulmonary bypass. The prospective randomized study included 32 rabbits divided into four groups: hypoxic preconditioning, hyperoxic preconditioning, hypoxic-hyperoxic preconditioning, and control group. All animals were anesthetized and mechanically ventilated. We provided preconditioning, then started cardiopulmonary bypass, followed by induced acute myocardial infarction (ischemia 45 min, reperfusion 120 min). We investigated endothelin-1, nitric oxide metabolites, asymmetric dimethylarginine during cardiopulmonary bypass: before ischemia, after ischemia, and after reperfusion. We performed light microscopy of myocardium, kidney, lungs, and gut mucosa. The endothelin-1 level was much higher in the control group than in all preconditioning groups after ischemia. The endothelin-1 even further increased after reperfusion. The total concentration of nitric oxide metabolites was significantly higher after all types of preconditioning compared with the control group. The light microscopy of the myocardium and other organs revealed a diminished damage extent in the hypoxic-hyperoxic preconditioning group as compared to the control group. Hypoxic-hyperoxic preconditioning helps to maintain the balance of nitric oxide metabolites, reduces endothelin-1 hyperproduction, and enforces organ protection.


Assuntos
Ponte Cardiopulmonar , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Modelos Animais de Doenças , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA