Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Parasitol Res ; 120(12): 4001-4012, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34694517

RESUMO

Embryonic development of reproductive organs in rediae of the digenean Bunocotyle progenetica was studied using transmission electron microscopy. The germinal primordium becomes morphologically distinct in early embryos as a weakly separated cell mass with a forming cavity. It consists of undifferentiated, differentiating, and supporting cells. As embryos develop, the supporting cells form a wall around the enlarging cavity. Other cells of the germinal primordium are incorporated into the wall as solitary cells or as small cell aggregations. Those situated posteriorly give rise to an incipient germinal mass functioning during postembryonic development. Undifferentiated and differentiating cells in the middle and the anterior part of the primordium ensure a considerable growth of the cavity wall, which incorporates solitary germinal cells. In advanced embryonic rediae, these cells mature, cleave, and give rise to germinal balls, which enter the forming brood cavity. In the most mature embryonic rediae, all these early cercarial embryos reside in a brood cavity, which is lined by that time with a syncytium continuous with the supporting tissue of the incipient germinal mass. Based on our results and the literature data, we suggest that the morphogenesis of the reproductive apparatus of the daughter parthenitae in hemiuroid digeneans may be characterized by (1) emergence of an incipient brood cavity within the germinal primordium, (2) formation of the cavity lining from the cells of the germinal primordium, (3) fragmentation and uneven distribution of the germinal material of the germinal primordium around the cavity, and (4) an anticipatory development of some of this germinal material.


Assuntos
Trematódeos , Animais , Cercárias , Desenvolvimento Embrionário , Microscopia Eletrônica de Transmissão , Reprodução
2.
Parasitol Res ; 118(4): 1193-1203, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30725179

RESUMO

The development of metacercariae of Diplostomum pseudospathaceum Niewiadomska, 1984 is accompanied by profound morphological transformations often characterized as metamorphosis, which makes these metacercariae an interesting case for studying the morphogenesis of the digenean nervous system. Although the nervous system of D. pseudospathaceum is one of the most extensively studied among digeneans, there are still gaps in our knowledge regarding the distribution patterns of some neuroactive substances, most notably neuropeptides. The present study addresses these gaps by studying pre-infective metacercariae of D. pseudospathaceum using immunochemical staining and confocal microscopy to characterize the distribution patterns of serotonin (5-HT) and two major groups of flatworm neuropeptides, FMRFamide-related (FaRPs) and substance P-related (SP) peptides. The general morphology of the nervous system was examined with antibodies to alpha-tubulin. The nervous system of the metacercariae was shown to conform to the most common morphology of the nervous system in the hermaphroditic generation, with three pairs of posterior nerve cords and four pairs of anterior nerves. The patterns of FaRP- and 5-HT immunoreactivity (IR) were similar to those revealed in earlier studies by cholinesterase activity, which is in accordance with the known role of these neurotransmitters in controlling muscle activity in flatworms. The SP-IR nervous system was significantly different and consisted of mostly bipolar cells presumably acting as mechanoreceptors. The architecture of the nervous system in D. pseudospathaceum metacercariae is discussed in comparison to that in cercariae of D. pseudospathaceum and metacercariae of related digenean species.


Assuntos
FMRFamida/metabolismo , Metacercárias/anatomia & histologia , Sistema Nervoso/anatomia & histologia , Substância P/metabolismo , Trematódeos/anatomia & histologia , Animais , Metacercárias/fisiologia , Metamorfose Biológica , Microscopia Confocal , Fenômenos Fisiológicos do Sistema Nervoso , Serotonina/metabolismo , Coloração e Rotulagem , Trematódeos/fisiologia , Tubulina (Proteína)/imunologia
3.
Parasitol Res ; 117(8): 2643-2652, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29948202

RESUMO

This study describes the fine structure of the germinal mass in daughter rediae of Tristriata anatis. The germinal mass consists of undifferentiated cells, germinal cells and supporting cells and contains numerous cercarial embryos up to tail bud stage. Supporting cells and their outgrowths form a tight meshwork of the germinal mass. In its basal part, this meshwork serves as scaffolding for undifferentiated and germinal cells, naked cell aggregates and early germinal balls. More mature embryos are located apically. The hypertrophied supporting tissue appears to be involved in an intensive transport of substances, as indicated by abundant gap junctions between cell outgrowths and numerous pinocytotic vesicles and microtubules in their cytoplasm. Germinal cells contain annulate lamellae and the nuage, typical organelles of animal oocytes. In young rediae containing embryonic cercariae at the tail bud stage, the supporting tissue starts to degenerate in the apical part of the germinal mass, and a primordial brood cavity emerges though it develops fully only in mature rediae containing late embryonic cercariae. An unusual feature of the germinal mass in T. anatis rediae is an enhancement of the embryo brooding function. At the same time, the performance of this function by the brood cavity is reduced. This is the first time such a redistribution of the embryo brooding function between the germinal mass and the brood cavity has been reported.


Assuntos
Gastrópodes/parasitologia , Trematódeos/ultraestrutura , Animais , Núcleo Celular/ultraestrutura , Cercárias/ultraestrutura , Citoplasma/ultraestrutura , Feminino , Microscopia Eletrônica de Transmissão , Reprodução , Trematódeos/fisiologia
5.
Parasitol Res ; 113(3): 1215-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24481901

RESUMO

The germinal mass in Himasthla elongata rediae was studied in detail using transmission electron microscopy. It was shown to be a specialized reproductive organ consisting of germinal cells at various maturation stages, supporting cells and stem cells. The germinal mass also contains early cercarial embryos emerging as a result of cleavage division of mature germinal cells. The stem cells that give rise to germinal cells have heterochromatin-rich nuclei with distinct nucleoli and scarce cytoplasm containing mainly free ribosomes and few mitochondria. The differentiating germinal cells undergo a growth, which is accompanied by an emergence of annulate lamellae and the nuage in their cytoplasm, a noticeable development of RER and Golgi apparatus and an increase in the number of mitochondria. The mitochondria form a large group at one of the cell poles. During differentiation, the nucleus and nucleolus of the germinal cell enlarge while the chromatin becomes gradually less condensed. The supporting tissue of the germinal mass is made up of cells connected by septate junctions. These supporting cells are distinctly different in cellular shape and nuclear ultrastructure. Their outgrowths form a tight meshwork housing stem cells, germinal cells and early cercarial embryos. The cytoplasm of the supporting cells in the mesh area is separated into fine parallel layers by labyrinthine narrow cavities communicating with the intercellular space. The supporting tissue contains differentiating and degenerating cells which indicates its renewal. The results of this ultrastructural study lend support to the hypothesis that the germinal cells of digeneans are germ line cells.


Assuntos
Echinostomatidae/ultraestrutura , Animais , Núcleo Celular/ultraestrutura , Cercárias/crescimento & desenvolvimento , Cercárias/ultraestrutura , Citoplasma/ultraestrutura , Echinostomatidae/crescimento & desenvolvimento , Gastrópodes/parasitologia , Complexo de Golgi , Microscopia Eletrônica de Transmissão , Mitocôndrias , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA