Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Monit Comput ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573367

RESUMO

PURPOSE: Neuromuscular monitoring is frequently plagued by artefacts, which along with the frequent unawareness of the principles of this subtype of monitoring by many clinicians, tends to lead to a cynical attitute by clinicians towards these monitors. As such, the present study aims to derive a feature set and evaluate its discriminative performance for the purpose of Train-of-Four Ratio (TOF-R) outlier analysis during continuous intraoperative EMG-based neuromuscular monitoring. METHODS: Patient data was sourced from two devices: (1) Datex-Ohmeda Electromyography (EMG) E-NMT: a dataset derived from a prospective observational trial including 136 patients (21,891 TOF-R observations), further subdivided in two based on the type of features included; and (2) TetraGraph: a clinical case repository dataset of 388 patients (97,838 TOF-R observations). The two datasets were combined to create a synthetic set, which included shared features across the two. This process led to the training of four distinct models. RESULTS: The models showed an adequate bias/variance balance, suggesting no overfitting or underfitting. Models 1 and 2 consistently outperformed the others, with the former achieving an F1 score of 0.41 (0.31, 0.50) and an average precision score (95% CI) of 0.48 (0.35, 0.60). A random forest model analysis indicated that engineered TOF-R features were proportionally more influential in model performance than basic features. CONCLUSIONS: Engineered TOF-R trend features and the resulting Cost-Sensitive Logistic Regression (CSLR) models provide useful insights and serve as a potential first step towards the automated removal of outliers for neuromuscular monitoring devices. TRIAL REGISTRATION: NCT04518761 (clinicaltrials.gov), registered on 19 August 2020.

2.
J Cardiothorac Vasc Anesth ; 38(3): 829-838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195271

RESUMO

Microcirculation is essential for cellular life and its functions. It comprises a complex network of capillaries, arterioles, and venules, which distributes oxygenated blood across and within organs based on regional metabolic demands. Because previous research indicated that organ function is linked to microcirculatory function, it is crucial to maintain sufficient and effective microcirculatory function during major surgery. Impaired microcirculation can lead to inadequate tissue perfusion, potentially resulting in perioperative complications and an unfavorable outcome. Indeed, changes in microcirculation in cardiovascular disease and cardiac surgery have a direct correlation with prolonged stays in the postoperative intensive care unit and high mortality rates within 30 days. Additionally, cardiopulmonary bypass, a regularly employed method in cardiac surgery, has been proven to induce microcirculatory malfunction and, thus, lead to postoperative multiple organ dysfunction. As global hemodynamic parameters can remain stable or improve, whereas microcirculation is still compromised, tracking microcirculatory variables could lead to the development of targeted microcirculatory treatment within hemodynamic management. Therefore, it is necessary to enhance the use of microcirculatory monitoring in the medical domain to assist physicians in the therapeutic management of patients undergoing cardiac surgery. This potentially can lead to better hemodynamic management and outcomes. This review article concentrates on the use of handheld video microscopes for real-time microcirculatory assessment of cardiac surgery patients in the immediate and early postoperative period. Emphasis is placed on integrating microcirculatory monitoring with conventional hemodynamic monitoring in the therapeutic management of patients undergoing cardiac surgery.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Doenças Cardiovasculares , Humanos , Microcirculação , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Procedimentos Cirúrgicos Cardíacos/métodos , Hemodinâmica , Ponte Cardiopulmonar/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA