Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408042

RESUMO

Aquatic habitat in the Greater Toronto Area has been subject to anthropogenic stressors. The subsequent aquatic habitat degradation that followed led to the Toronto and Region waterfront being listed as an Area of Concern in 1987. Thus, extensive shoreline and riparian habitat restoration have been implemented as part of the Toronto and Region Remedial Action Plan in conjunction with local stakeholders, ministries, and NGOs in an overall effort to increase fish, bird, and wildlife habitat. A key aspect of current fish habitat restoration efforts, monitored by Toronto and Region Conservation Authority, is to account for long-term community changes within the target ecosystem to better understand overall changes at a larger spatial scale. Here we use electrofishing data from the past 20 years with over 100,000 records and across 72km of coastline to show how declines and fluctuations in fish biomass and catch along the waterfront are driven by a few individual species across three main ecotypes, such as coastal wetlands, embayments, and open coast sites, with the remaining species showing a high level of stability. Using community traits and composition for resident species we demonstrate native warmwater species have become more dominant along the waterfront in recent years, suggesting that restoration efforts are functioning as intended. Additionally, piscivore and specialist species have increased in their relative biomass contribution, approaching existing restoration targets. Altogether this waterfront-wide evaluation allows us to detect overall changes along the waterfront and can be beneficial to understand community changes at an ecosystem level when implementing and monitoring restoration projects.


Assuntos
Ecossistema , Peixes , Animais , Áreas Alagadas , Biomassa , Animais Selvagens , Conservação dos Recursos Naturais
2.
PLoS One ; 19(2): e0292702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319907

RESUMO

Biodiversity and mitigation banking has become a popular alternative offsetting mechanism, especially for freshwater species and systems. Central to this increase in popularity is the need for sound control mechanisms to ensure offset functionality. Two commonly used mechanisms are monitoring requirements and staggered release of bank credits over time. We used data from 47 banks in the United States, targeting freshwater systems and species. Based on the 47 banks meeting our criteria we showed that control mechanisms generally scale with increased project complexity and that banks release most of their total credit amount within the first 3 years. We further showed that advance credits are common and can increase the potential for credit release without providing tangible ecological benefits. Physical and biological assessment criteria commonly used by banks let us identify three main bank types focusing on connectivity, physical aspects, and habitat and species and their application possibilities and caveats to provide different ecosystem benefits for freshwater species and systems affected by anthropogenic development.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Estados Unidos , Biodiversidade , Água Doce
3.
Environ Manage ; 73(1): 199-212, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177790

RESUMO

Mitigation banking is part of the ever-expanding global environmental market framework that aims to balance negative approved anthropogenic impacts versus third-party provided ecosystem benefits, sold in the form of credits. Given the need to conserve freshwater biodiversity and habitat, banking has received great traction for freshwater species and systems. While extensive reviews and studies have been conducted on evaluating if equivalency between impacts and offset can be achieved, there is almost no research being done on the way credits are being generated and banks are managed to inform future best practice and policy. Synthesizing banking data through cluster analyzes from 26 banks in the United States generating credits for freshwater species and associated systems, we show two generalizable approaches: removing barriers and targeting whole communities. Both address crucial freshwater conservation needs but come with their risks and caveats. Using common characteristics and management practices founded in federal and district level guidance within these two groups, we showcase and conclude that credit generation via barrier removal can be at risk of granting credit generation for too large of an area, leading to over-crediting. Banks targeting whole freshwater communities and accounting for landscape-level interactions and influences can potentially be detrimental for species on an individual level and large-scale credit availability as well as transfer can incentivize non-compliance with the mitigation hierarchy.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Estados Unidos , Biodiversidade , Água Doce
4.
Environ Manage ; 70(5): 793-807, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35986747

RESUMO

Offsetting aims to compensate for negative impacts due to authorized anthropogenic impacts associated with development. While anchored into legislation, residual or chronic impacts can occur after offset establishment. Advice and best practice on how to approach these impacts is rare. To address this, we reviewed 30 projects based on a systematic review and meta-analysis in freshwater ecosystems dealing with residual or long-term negative impacts to provide application advice for: habitat creation, habitat restoration, and biological and chemical manipulation. Project information was obtained through Boolean search terms and web-scraping. Habitat creation projects had a pooled effect size of 0.8 and offsetting ratios of 1:5 with high biomass increases of >140% compared to pre-establishment, associated with them. Habitat restoration projects targeted a wide range of species and communities with a pooled effect size of 0.66, offset ratios ranging from 1:1.2 to 1:4.6, and biomass increases generally > 100% compared to pre-restoration. Biological manipulation had the lowest effect size (0.51) with stocking being highly variable both in terms of biomass benefits and project outcomes pointing towards being mostly applicable in cases of direct fish harm not related to habitat aspects. We conclude that (1) all three assessed approaches have a potential application use for offsetting residual or chronic harm with approach-specific caveats. (2) Implementation costs differ across offset methods, with connectivity and side-channel projects having the lowest biomass gain per area costs (3) Time to first benefits required one to two years with time lags needing to be accounted for in the implementation and monitoring process.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Biomassa , Peixes , Água Doce
5.
J Fish Biol ; 100(1): 229-241, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34739138

RESUMO

The field of stable isotope ecology is moving away from lethal sampling (internal organs and muscle) towards non-lethal sampling (fins, scales and epidermal mucus). Lethally and non-lethally sampled tissues often differ in their stable isotope ratios due to differences in metabolic turnover rate and isotopic routing. If not accounted for when using non-lethal tissues, these differences may result in inaccurate estimates of resource use and trophic position derived from stable isotopes. To address this, the authors tested whether tissue type, season and their interaction influence the carbon and nitrogen stable isotope ratios of fishes and whether estimates of species trophic position and resource use are affected by tissue type, season and their interaction. This study developed linear conversion relationships between two fin types and dorsal muscle, accounting for seasonal variation. The authors focused on three common temperate freshwater fishes: northern pike Esox lucius, yellow perch Perca flavescens and lake whitefish Coregonus clupeaformis. They found that fins were enriched in 13 C and depleted in 15 N compared to muscle in all three species, but the effect of season and the interaction between tissue type and season were species and isotope dependent. The estimates of littoral resource use based on fin isotope ratios were between 13% and 36% greater than those based on muscle across species. Season affected this difference for some species, suggesting the potential importance of using season-specific conversions when working with non-lethal tissues. Fin and muscle stable isotopes produced similar estimates of trophic position for northern pike and yellow perch, but fin-based estimates were 0.2-0.4 trophic positions higher than muscle-based estimates for lake whitefish. The effect of season was negligible for estimates of trophic position in all species. Strong correlations existed between fin and muscle δ13 C and δ15 N values for all three species; thus, linear conversion relationships were developed. The results of this study support the use of non-lethal sampling in stable isotope studies of fishes. The authors suggest that researchers use tissue conversion relationships and account for seasonal variation in these relationships when differences between non-lethal tissues and muscle, and seasonal effects on those differences, are large relative to the scale of isotope values under investigation and/or the trophic discrimination factors under use.


Assuntos
Percas , Animais , Isótopos de Carbono/análise , Água Doce , Isótopos de Nitrogênio/análise , Estações do Ano
7.
Environ Manage ; 67(4): 682-696, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462677

RESUMO

There has been much written about the negative social and environmental impacts of large hydropower dams, particularly the impacts on people and the environment caused by flooding linked to the creation of large reservoirs. There has also long been recognition of the importance of Indigenous and local knowledge for understanding ecological processes and environmental impacts. In this paper, however, we focus on a topic that has received insufficient consideration: the downstream impacts of dams, and the role of Indigenous and local knowledge in assessing and addressing these impacts. Using examples from three river basins in different parts of the world: the Peace-Athabasca in Canada, the Mekong in mainland Southeast Asia, and the Amazon in Brazil, we demonstrate that the downstream impacts of hydropower dams are often neglected due to the frequently long distances between dams and impacted areas, jurisdictional boundaries, and the less obvious nature of downstream impacts. We contend that Indigenous or local knowledge, if applied consistently and appropriately, has important roles to play in understanding and addressing these impacts, with the goal of avoiding, reducing, and appropriately compensating for the types of environmental injustices that are frequently associated with the downstream impacts of dams.


Assuntos
Inundações , Rios , Brasil , Canadá , Humanos
8.
Environ Toxicol Chem ; 40(2): 422-434, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33201525

RESUMO

Trace elements can accumulate in aquatic food webs, becoming potentially hazardous to wildlife and human health. Whereas many studies have examined mercury dynamics in freshwater environments, evidence for the bioaccumulative potential of other trace elements (e.g., arsenic) is conflicting. Trace element concentrations found in surface water of the Red Deer River, Alberta, Canada, have raised concern for potential accumulation in aquatic biota. We investigated fish from this river to better understand the influence of biological and environmental factors in trace element bioaccumulation. We analyzed 20 trace elements, and stable nitrogen (δ15 N) and carbon (δ13 C) isotopes, in the muscle tissue of 8 species. Zinc, selenium, arsenic, chromium, and nickel were detected in the majority of fish at low concentrations. However, mercury was detected in all fish and often exceeded criteria for the protection of consumers. Body size was often positively correlated with trace element concentrations. In addition, δ15 N and δ13 C were correlated to mercury and arsenic concentrations, indicating that mercury biomagnifies whereas arsenic biodiminishes. Spatial patterns of fish trace element concentrations did not reflect differences in surface water concentrations. These findings indicate that fish trace element concentrations are primarily moderated by biological factors, such as trophic position and body size, and are not locally restricted to areas of relatively high environmental concentrations in the Red Deer River. Environ Toxicol Chem 2021;40:422-434. © 2020 SETAC.


Assuntos
Cervos , Mercúrio , Oligoelementos , Poluentes Químicos da Água , Alberta , Animais , Fatores Biológicos , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Mercúrio/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise
9.
Chemosphere ; 262: 128059, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182110

RESUMO

Bioaccumulation of mercury in freshwater fish is a complex process driven by environmental and biological factors. In this study, we assessed mercury in fish from four tributaries to the Red Deer River, Alberta, Canada, which are characterized by high surface water mercury concentrations. We used carbon (δ13C) and nitrogen (δ15N) stable isotopes to examine relationships between fish total mercury (THg) concentrations, food web dynamics and patterns in unfiltered THg and methylmercury (MeHg) concentrations. We found that THg concentrations exceeded the tissue residue quality guideline for the protection of wildlife consumers in 99.7% of fish sampled. However, while the surface water THg concentration was highest in Michichi Creek and the MeHg concentration was consistent across streams, patterns of fish THg concentrations varied depending on species. Furthermore, body size and trophic level were only correlated with THg concentrations in white sucker (Catostomus commersoni) and Prussian carp (Carrasius gibelio). The results of this study suggest that mercury poses a risk to the health of piscivorous wildlife in the Red Deer River watershed. Despite high THg concentrations in these streams, mercury bioaccumulation is not driven by environmental inorganic mercury concentrations. Additionally, commonly cited factors associated with mercury concentrations in fish, such as body size and trophic level, may not strongly influence bioaccumulation in these stream ecosystems.


Assuntos
Bioacumulação , Monitoramento Ambiental/métodos , Peixes/metabolismo , Mercúrio/análise , Compostos de Metilmercúrio/análise , Rios/química , Poluentes Químicos da Água/análise , Agricultura , Alberta , Animais , Cadeia Alimentar , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Poluentes Químicos da Água/metabolismo
10.
Conserv Biol ; 34(1): 41-53, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31058355

RESUMO

Land-use change via human development is a major driver of biodiversity loss. To reduce these impacts, billions of dollars are spent on biodiversity offsets. However, studies evaluating offset project effectiveness that examine components such as the overall compliance and function of projects remain rare. We reviewed 577 offsetting projects in freshwater ecosystems that included the metrics project size, type of aquatic system (e.g., wetland and creek), offsetting measure (e.g., enhancement, restoration, and creation), and an assessment of the projects' compliance and functional success. Project information was obtained from scientific and government databases and gray literature. Despite considerable investment in offsetting projects, crucial problems persisted. Although compliance and function were related to each other, a high level of compliance did not guarantee a high degree of function. However, large projects relative to area had better function than small projects. Function improved when projects targeted productivity or specific ecosystem features and when multiple complementary management targets were in place. Restorative measures were more likely to achieve targets than creating entirely new ecosystems. Altogether the relationships we found highlight specific ecological processes that may help improve offsetting outcomes.


Cumplimiento y Función Ambiental de las Compensaciones por Biodiversidad en las Aguas Dulces de América del Norte y Europa Resumen El cambio del uso de suelo causado por el desarrollo humano es un causante fundamental de la pérdida de biodiversidad. Para reducir estos impactos se gastan miles de millones de dólares en las compensaciones por biodiversidad. Sin embargo, todavía son raros los estudios de evaluación de la efectividad de los proyectos de compensación que examinen componentes como el cumplimiento general y la función de los proyectos. Revisamos 577 proyectos de compensación en ecosistemas de agua dulce que incluyeran las medidas del tamaño del proyecto, el tipo de ecosistema acuático (p. ej.: arroyo, humedal), la medida de compensación (p. ej.: mejoramiento, restauración, creación) y una evaluación del cumplimiento y el éxito funcional del proyecto. La información sobre los proyectos se obtuvo de bases de datos científicas y del gobierno y de la literatura gris. A pesar de la inversión considerable que existe para los proyectos de compensación persistieron problemas cruciales. Aunque el cumplimiento y la función estuvieron relacionados entre sí, un nivel alto de cumplimiento no garantizó un nivel alto de función. Sin embargo, los proyectos grandes en relación con el área tuvieron una mejor función que los proyectos pequeños. La función incrementó cuando los proyectos se enfocaban en la productividad o en características específicas del ecosistema y cuando los objetivos complementarios de manejo estaban en orden. Las medidas de restauración tuvieron mayor probabilidad de lograr los objetivos que la creación de un ecosistema totalmente nuevo. En general, las relaciones que encontramos resaltan los procesos ecológicos que podrían ayudar a mejorar los resultados de la compensación.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Água Doce , Humanos , Estados Unidos , Áreas Alagadas
11.
Sci Total Environ ; 655: 363-373, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30471605

RESUMO

The Lower Athabasca Region (LAR) is home to the largest bitumen deposit in Alberta, and has seen industrial development related to the extraction and processing of bituminous sands since the late 1960s. Along with industrial and economic growth related to oil sands development, environmental concerns have increased in recent decades, including those about potential effects on fish. We measured major and trace element concentrations in Trout-perch otoliths from the Athabasca and Clearwater Rivers in the LAR, to illustrate spatial variations and identify possible industrial impacts. Both laser ablation ICP-MS and solution-based ICP-MS methods were employed. Of the trace elements enriched in bitumen (V, Ni, Mo and Re), only Ni and Re were above the limits of detection using at least one of the methods. The only significant differences in element concentrations between upstream and downstream locations were found for Li, Cu, and Pb which were more abundant upstream of industry. For comparison and additional perspective, otoliths from the same fish species, but taken from the Batchawana River in northern Ontario, were also examined. The fish from Alberta yielded greater concentrations of Ba, Bi, Li, Mg, Na, Re, Sc, Th and Y, but the Ontario fish had more Cr, Rb and Tl, likely because of differences in geology.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Membrana dos Otólitos/química , Perciformes/crescimento & desenvolvimento , Oligoelementos/análise , Poluentes Químicos da Água/análise , Alberta , Animais , Hidrocarbonetos/química , Limite de Detecção , Campos de Petróleo e Gás , Ontário , Análise Espacial
12.
Sci Total Environ ; 650(Pt 2): 2559-2566, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30373047

RESUMO

It has been suggested that open pit mining and upgrading of bitumen in northern Alberta releases Tl and other potentially toxic elements to the Athabasca River and its watershed. We examined Tl and other trace elements in otoliths of Trout-perch (Percopsis omiscomaycus), a non-migratory fish species, collected along the Athabasca River. Otoliths were analyzed using ICP-QMS, following acid digestion, in the metal-free, ultraclean SWAMP laboratory. Compared to their average abundance in the dissolved (<0.45 µm) fraction of Athabasca River, Tl showed the greatest enrichment in otoliths of any of the trace elements, with enrichments decreasing in the order Tl, Sr, Mn, Zn, Ba, Th, Ni, Rb, Fe, Al, Cr, Ni, Cu, Pb, Co, Li, Y, V, and Mo. Normalizing Tl in the otoliths to the concentrations of lithophile elements such as Li, Rb, Al or Y in the same tissue reveals average enrichments of 177, 22, 19 and 190 times, respectively, relative to the corresponding ratios in the water. None of the element concentrations (Tl, Li, Rb, Al, Y) or ratios were significantly greater downstream of industry compared to upstream. This natural bioaccumulation of Tl most likely reflects the similarity in geochemical and biological properties of Tl+ and K+. SUMMARY OF MAIN FINDINGS: Thallium is enriched in fish otoliths, relative to the chemical composition of the river, to the same degree both upstream and downstream of industry.


Assuntos
Exposição Ambiental , Peixes/metabolismo , Membrana dos Otólitos/química , Tálio/metabolismo , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo , Alberta , Animais , Monitoramento Ambiental , Hidrocarbonetos , Mineração , Rios
13.
Environ Pollut ; 243(Pt B): 1343-1351, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30268985

RESUMO

Selenium in the lower Athabasca River (Alberta, Canada) is of concern due to potential inputs from the weathering of shallow bitumen deposits and emissions from nearby surface mines and upgraders. Understanding the source of this Se, however, is complicated by contributions from naturally saline groundwater and organic matter-rich tributaries. As part of a two-year multi-disciplinary study to assess natural and anthropogenic inputs, Se and its chemical speciation were determined in water samples collected along a ∼125 km transect of the Athabasca River and associated tributaries. Selenium was also determined in the muscle of Trout-perch (Percopsis omiscomaycus), a non-migratory fish species, that were sampled from selected locations. Dissolved (<0.45 µm) Se in the Athabasca River was consistently low in 2014 (0.11 ±â€¯0.02 µg L-1; n = 14) and 2015 (0.16 ±â€¯0.02 µg L-1; n = 21), with no observable increase from upstream to downstream. Selenate was the predominant inorganic form (∼60 ng L-1) and selenite was below detection limits at most locations. The average concentration of Se in Trout-perch muscle was 2.2 ±â€¯0.4 mg kg-1 (n = 34), and no significant difference (p > 0.05) was observed between upstream and midstream (industrial) or downstream reaches. Tributary waters contained very low concentrations of Se (typically < 0.1 µg L-1), which was most likely present in the form of dissolved organic colloids.


Assuntos
Monitoramento Ambiental , Selênio/análise , Poluentes Químicos da Água/análise , Alberta , Animais , Peixes , Água Subterrânea , Hidrocarbonetos , Mineração , Rios
14.
R Soc Open Sci ; 4(10): 170400, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29134062

RESUMO

Prussian carp (Carassius gibelio) are one of the most noxious non-native species in Eurasia. Recently, Prussian carp, a non-native freshwater fish species, were genetically confirmed in Alberta, Canada and have been rapidly expanding their range in North America since establishment. Given their rapid range expansion, there is an increasing need to determine how Prussian carp may impact native species. We assessed the severity of the Prussian carp invasion by (i) determining their impact on fish communities, (ii) assessing their impact on benthic invertebrate communities, (iii) evaluating if Prussian carp alter abiotic conditions, and (iv) identifying where we find higher abundances of Prussian carp. When Prussian carp were established, we found significant changes to the fish community. Correspondingly, the degree of impact to benthic invertebrate communities was related to the stage of invasion (none, early or recent), where changes in fish communities were significantly concordant with changes in benthic invertebrate communities. Finally, we found that higher abundances of Prussian carp were significantly associated with lower abundances of a majority of native fish species. Altogether, using three lines of evidence, we determine that Prussian carp can have wide-ranging impacts on freshwater ecosystems in North America, pressing the need for management intervention.

15.
Environ Sci Technol ; 51(17): 9524-9532, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28726392

RESUMO

With growth of the Canadian oil sands industry, concerns have been raised about possible seepage of toxic oil sands process-affected water (OSPW) into the Athabasca River (AR). A sampling campaign in fall 2015 was undertaken to monitor for anthropogenic seepage while also considering natural sources. Naphthenic acids (NAs) and thousands of bitumen-derived organics were characterized in surface water, groundwater, and OSPW using a highly sensitive online solid phase extraction-HPLC-Orbitrap method. Elevated NA concentrations and bitumen-derived organics were detected in McLean Creek (30.1 µg/L) and Beaver Creek (190 µg/L), two tributaries that are physically impacted by tailings structures. This was suggestive of OSPW seepage, but conclusive differentiation of anthropogenic and natural sources remained difficult. High NA concentrations and bitumen-derived organics were also observed in natural water located far north of the industry, including exceedingly high concentrations in AR groundwater (A5w-GW, 2000 µg/L) and elevated concentration in a tributary river (Pierre River, 34.7 µg/L). Despite these evidence for both natural and anthropogenic seepage, no evidence of any bitumen-derived organics was detected at any location in AR mainstem surface water. The chemical significance of any bitumen-derived seepage to the AR was therefore minimal, and focused monitoring in tributaries will be valuable in the future.


Assuntos
Ácidos Carboxílicos/análise , Campos de Petróleo e Gás , Canadá , Água , Poluentes Químicos da Água
16.
Conserv Physiol ; 5(1): cox026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28480038

RESUMO

Hydrologic alterations, such as dams, culverts or diversions, can introduce new selection pressures on freshwater fishes, where they are required to adapt to novel environmental conditions. Our study investigated how species adapt to natural and altered stream flow, where we use the threatened Rocky Mountain Sculpin (Cottus sp.) as a model organism. We compared the swimming and station-holding performance of Rocky Mountain Sculpin from four different hydrologic regimes in Alberta and British Columbia, including the North Milk River, a system that experiences increased flows from a large-scale diversion. We measured the slip (Uslip) and failure (Uburst) velocities over three constant acceleration test trials. Uslip was defined as the point at which individuals required the addition of bursting or swimming to maintain position. Uburst was defined as the point at which individuals were unable to hold position in the swimming chamber through swimming, bursting or holding techniques without fully or partially resting on the electrified back plate. We found individuals from the Flathead River in British Columbia (with the highest natural flow) failed at significantly higher Uburst velocities than fish from the southern Albertan populations. However, there was no relationship between peak hydrologic flow from the natal river and Uburst or Uslip. Further, Uburst velocities decreased from 51.8 cm s-1 (7.2 BL s-1) to 45.6 cm s-1 (6.3 BL s-1) by the third consecutive test suggesting the use of anaerobic metabolism. Uslip was not different between trials suggesting the use of aerobic metabolism in station-holding behaviours (Uslip). Moreover, we found no significant differences in individuals from the altered North Milk River system. Finally, individual caudal morphological characteristics were related to both slip and failure velocities. Our study contributes to the conservation of Rocky Mountain Sculpin by providing the first documentation of swimming and station-holding abilities of this benthic fish.

17.
Sci Total Environ ; 598: 1-11, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28433817

RESUMO

Climate change is affecting many freshwater species, particularly fishes. Predictions of future climate change suggest large and deleterious effects on species with narrow dispersal abilities due to limited hydrological connectivity. In turn, this creates the potential for population isolation in thermally unsuitable habitats, leading to physiological stress, species declines or possible extirpation. The current extent of many freshwater fish species' spatio-temporal distribution patterns and their sensitivity to thermal impacts from climate change - critical information for conservation planning - are often unknown. Carmine shiner (Notropis percobromus) is an ecologically important species listed as threatened or imperilled nationally (Canada) and regionally (South Dakota, United States) due to its restricted range and sensitivity to water quality and temperature. This research aimed to determine the current distribution and spatio-temporal variability in projected suitable habitat for Carmine shiner using niche-based modeling approaches (MaxEnt, BIOCLIM, and DOMAIN models). Statistically downscaled, bias-corrected Global Circulation Models (GCMs) data was used to model the distribution of Carmine shiner in central North America for the period of 2041-2060 (2050s). Maximum mean July temperature and temperature variability were the main factors in determining Carmine shiner distribution. Patterns of projected habitat change by the 2050s suggest the spatial extent of the current distribution of Carmine shiner would shift north, with >50% of the current distribution changing with future projections based on two Representative Concentrations Pathways for CO2 emissions. Whereas the southern extent of the distribution would become unsuitable for Carmine shiner, suitable habitats are predicted to become available further north, if accessible. Importantly, the majority of habitat gains for Carmine shiner would be in areas currently inaccessible due to dispersal limitations, suggesting current populations may face an extinction debt within the next half century. These results provide evidence that Carmine shiner may be highly vulnerable to a warming climate and suggest that management actions - such as assisted migration - may be needed to mitigate impacts from climate change and ensure the long-term persistence of the species.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Cyprinidae , Animais , Canadá , Ecossistema , Espécies em Perigo de Extinção , Água Doce , Modelos Teóricos , South Dakota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA